

Programmable Logic Controller
Application Specification

Global Common

SD-1032

ISSUED July 01, 2007
REVISED February 21, 2017

© 2017 Nexteer Automotive

All rights reserved.

Revision Feb 21, 2017 Page 2 of 66

Programmable Logic Controller

Application Specification SD-1032

This page intentionally blank.

Revision Feb 21, 2017 Page 3 of 66

Programmable Logic Controller

Application Specification SD-1032

Table of Contents

1. Scope and Purpose .. 6

1.1 Scope ... 6

1.2 Purpose and Objective .. 7

1.3 Critical Principle - Control Functions in the Event of Failure .. 7

2. Requirements (associated routine name) .. 8

2.1 Main Program Control (R00_Main routine) ... 8

2.2 Mode Selection (R01_Mode Routine) .. 9

2.3 Precondition and Initiate Machine Cycle (R03_Cycle Routine) 10

2.4 Signal Conditioning (R04_Analog Routine) .. 15

2.5 Machine Sequence (R05_Sequence Routine) ... 16

2.6 Part Quality Logic (R06_Quality Routine) ... 20

2.7 Solenoid Control (R07_OutputMotions Routine) ... 24

2.8 Machine Diagnostics – Display Control (multiple routines) .. 31

2.9 Machine Diagnostics – Conditions and Detection logic ... 32

2.10 Routines Required On All Machines .. 34

3. Required Logic Design - Application Specific ... 36

3.1 Light Curtain Interruption ... 36

3.2 Motor Starter Control .. 37

3.3 Shift Register / Indexing Logic ... 38

3.4 Pallet Release / Pallet Memory ... 39

3.5 Indicator Lights ... 39

3.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIs) 40

A. Annex A - Machine Diagnostics Scheme and Hierarchy ... 42

B. Annex B - Controller: Organizer, Structure, Names, and Instructions 44

C. Annex C – Complex or Special Sequence Considerations ... 58

D. Annex D - Cycle Pause - Pausing a Cycle .. 62

E. Annex E - Glossary ... 64

F. Annex F - References.. 65

Revision Feb 21, 2017 Page 4 of 66

Programmable Logic Controller

Application Specification SD-1032

List of Figures

Figure 1: Deterministic Update of Inputs ... 8

Figure 2: Reset All Memories Examples ... 12

Figure 3: Reset String Memory Example ... 13

Figure 4: Reset All Memories Logic Rung .. 14

Figure 5: Sequence Structure - Preferred – Two Machine Tasks / Two Rungs 16

Figure 6: Sequence Structure – Allowed – Two Machine Tasks / Two Instructions 17

Figure 7: Sequence Structure – NOT ALLOWED – Two Machine Tasks / One Instruction .. 17

Figure 8: Reset Sequence Logic ... 18

Figure 9: Examples of Minimum Collision Avoidance Logic ... 24

Figure 10: Example Use Of Collision Avoidance Logic .. 25

Figure 11: Example Auto Allow Logic (Motion Towards the Work Position) 25

Figure 12: Example Auto Allow Logic (Motion Toward Home Position) 25

Figure 13: Example Solenoid Control Rung .. 26

Figure 14: Remove Solenoid Power ... 27

Figure 15: Example Single Solenoid Motion Valve Logic .. 28

Figure 16: Example Motor Starter (Start/Stop) Logic .. 30

Figure 17: Example Sequence-Controlled Motor Starter Logic ... 30

Figure 18: Nexteer_Library Controller Organizer ... 34

Figure 19: Multiple Station Controller Organizer Views ... 35

Figure 20: Light Curtain Interruption ... 36

Figure 21: Example Motor Starter Logic ... 37

Figure 22: Controller Organizer Routines .. 45

Figure 23: Controller Organization – I/O Configuration for Single Station 47

Figure 24: Controller Organization – I/O Configuration for Multiple Station 48

Figure 25: Library UDTs .. 50

Figure 26: Torque Process Example (Support must remain lowered) 61

Figure 27: Oetiker Clamp Process Example (Lift must remain lowered) 61

Figure 28: Auto Allow Collision Avoidance for Cycle Pause ... 62

Revision Feb 21, 2017 Page 5 of 66

Programmable Logic Controller

Application Specification SD-1032

List of Tables

Table 1: I/O Tag Consistency – Local and Distributed I/O .. 52

Table 2: I/O Tag Consistency – Distributed I/O ... 53

Table 3: I/O Tag Consistency – Code Reader .. 54

Table 4: Routine and Tag Name Consistencies (Set 1) .. 55

Table 5: Routine and Tag Name Consistencies (Set 2) .. 56

Table 6: Tag Description Examples .. 57

Revision Feb 21, 2017 Page 6 of 66

Programmable Logic Controller

Application Specification SD-1032

1. Scope and Purpose

1.1 Scope

1.1.1 This specification describes programmable logic controller (PLC) logic design functional

requirements and format for Nexteer Automotive facilities. This specification shall be

used by the Original Equipment Manufacturers (OEM) in their design of PLC systems.

1.1.2 This specification applies to the purchase of new equipment and control system rebuilds.

It should not be implied that any existing equipment is required to be retrofitted to

comply with this specification.

1.1.3 This specification references three associated PLC logic files: Nexteer_Library,
SingleStation, and MultiStation. These Nexteer logic files (collectively referred to as

templates) reflect the requirements of this specification (Nexteer Library); they provide

additional logic routines for specific applications (Nexteer Library); and they provide

examples for applying the Nexteer routines and specifications to two typical types of

machines (SingleStation and MultiStation). The PLC logic files are available at

www.nexteerdataexchange.com.

1.1.4 Additional applications specific guidelines that include PLC logic-related topics (such as

HMI operator interface, RFID, or traceability) are also available at

www.nexteerdataexchange.com.

1.1.5 The use of the word “shall” indicates requirements and the use of the word “should”

indicates recommendations. The use of the word “may” indicates permission or

allowance and the use of the word “can” indicates a possibility.

1.1.6 This specification is structured as follows.

1. Requirements and guidance are detailed within Section 2.

2. Additional application specific requirements are detailed in Section 3.

3. Nexteer’s machine diagnostic philosophy, scheme, and hierarchy are described in

Annex A. An understanding first of Annex A’s philosophies will aid in understanding

the machine diagnostics requirements of Section 2.

4. The PLC logic structure and organization is summarized in Annex B.

Revision Feb 21, 2017 Page 7 of 66

Programmable Logic Controller

Application Specification SD-1032

1.2 Purpose and Objective

1.2.1 The purpose of this specification is to provide Nexteer requirements and guidance to

Original Equipment Manufacturers (OEM) for use in their design of PLC logic.

1.2.2 The objective of this specification is to provide common, maintainable, and cost effective

controls systems that enhance both the productivity and ease-of-use of the systems, plus

ensure the quality of Nexteer products produced. The application of this specification will

result in common controls systems software that:

1. ensures the machine processes the part correctly. To correctly process the part, the

machine logic design needs to include significant consideration for the control functions

in the event of failure such that the machine is not capable of processing the part

incorrectly. Aspects of control functions in the event of failure are discussed in detail

throughout this specification.

2. provides ease of customer use. Ease of customer use relates to logic that provides plant

personnel a quick understanding as to how the machine processes the part, logic that

can be quickly used to troubleshoot failures, and logic that can be easily used to verify

part quality. The Nexteer templates provide common structure and naming conventions

for the purpose of improved plant production, independent of which OEM supplied the

equipment.

3. facilitates the OEM design and Nexteer logic approval process. Nexteer’s specifications

require logic/software approval prior to MQ1. Nexteer’s approval process, adherence to

this specification, and use of the templates, provides an opportunity for the OEM to

demonstrate compliance to the requirements.

1.3 Critical Principle - Control Functions in the Event of Failure

1.3.1 Control Functions in the Event of Failure: the controls systems software design shall

include appropriate measures such that failures within the electrical equipment do not

cause the system to incorrectly process the part, and failures within the electrical

equipment shall not cause the system to qualify a Reject Part as a Good Part. Appropriate

measures shall include detection of, and indication of, such failures.

To clarify: Nexteer specifications and templates use the terms “Back check”, “Back
checking”, or “Back checked” to indicate the logic that takes appropriate measures to
protect against such failures.

Back checking is a phrase that Nexteer uses relating to logic that both verifies the proper
input device operation and also detects input failure.

Back checking verifies the operation (action) of the input device. Back checking also
verifies the operation (action) of the PLC input card electronics.

Back checking also verifies the operation (action) of communications, whether parallel
or serial, such that part process and quality is based upon up-to-date (actual and
current) data, not based upon stale data (retained, old, or previous-part data).

Failure detection (back checking) may either stop the machine immediately, or disallow
the start of the next cycle, depending on the application.

Revision Feb 21, 2017 Page 8 of 66

Programmable Logic Controller

Application Specification SD-1032

2. Requirements (associated routine name)

Nexteer’s functional requirements are described within this chapter. Each clause of this chapter

details a logic topic and typically indicates which Nexteer routine(s) is associated with that logic

topic.

The routines provided in the Main Program of the logic Nexteer_Library file shall be used for all

applications; programmed on all equipment even when the equipment does not include any logic

within the routine. Additional routines from the Nexteer_Library program are detailed elsewhere

within this specification. Note: The MultiStation example uses all of the required routines,
distributing them appropriately between the Main Program and the station programs.
Nexteer’s logic organization, structure, and naming conventions are described in Annex B.

2.1 Main Program Control (R00_Main routine)

Requirements:

2.1.1 The routine named Main shall be assigned as the main routine (within the main

program’s configuration properties, and within the configurations properties for all

station programs for a multiple station system).

2.1.2 The Main routine shall include logic that controls the deterministic (once-per-scan)

update of discrete and analog I/O tags for all module and slot-based signals (module

data). Input tags shall be mapped from the module data; output tags shall be mapped to

the module data. The I/O tags shall be used throughout the logic.

Note: Aliasing does not accomplish deterministic, once-per-scan updates.

Note: Communications with auxiliary devices such as cameras and servos, when mapped
within a device-associated routine, are not required to be mapped in the Main routine.

Figure 1: Deterministic Update of Inputs

Revision Feb 21, 2017 Page 9 of 66

Programmable Logic Controller

Application Specification SD-1032

2.1.3 Each program’s Main routine shall include logic that unconditionally calls (jumps to) all

other routines of the program. The routines shall be called in the same rung-order as is

visible in the controller organizer.

Guidance:

2.1.4 The only additional logic that should be included in the Main routine is miscellaneous

logic, such as the logic shown within the templates’ Main routines.

2.1.5 The Main routine may include general logic for indicator lights.

2.1.6 The deterministic (once-per-scan) update of station I/O tags on multiple station

equipment can be programmed within the controller’s Main program or within each

associated station’s Main program.

2.2 Mode Selection (R01_Mode Routine)

Requirements:

2.2.1 The Mode routine shall include all logic that controls the selection of modes.

2.2.2 The machine shall power up with no mode active. After selection, one mode, and only

one mode, shall be active. Note: Being in an E-Stop condition should not deactivate a
mode selection.

2.2.3 At a minimum, all machines shall include two modes – Manual and Automatic. Note:
Machine motion shall only be enabled when a mode is active.

1. Manual Mode - Manual mode allows individual motions to be commanded. Manual

mode is not a forced logical “step through the machine sequence”, but is a means for

operators and maintenance to exercise any individual motion. The system shall not be

allowed to switch to manual mode (from auto mode) while the machine is in cycle.

2. Automatic Mode - Automatic mode is the mode that allows normal machine cycles and

prohibits manual motions. Automatic mode does not initiate any machine motions.

Guidance:

2.2.4 Other operating modes may be included on the machine. However many additional

machine processes are typically subcategories of Manual mode or Automatic mode and

are not as such an additional type of mode. Refer to the Cycle routine section below for

examples of Return All and Calibration which are both a type of cycle – not a mode.

2.2.5 The requirements for PSDI, an additional type of cycle that is allowed for specific

applications, are detailed in SD-011.

2.2.6 For multiple station equipment with multiple programs, mode selection logic should be

programmed within both the Main program’s Mode routine and within each station’s

Mode routine.

Revision Feb 21, 2017 Page 10 of 66

Programmable Logic Controller

Application Specification SD-1032

2.3 Precondition and Initiate Machine Cycle (R03_Cycle Routine)

Requirements:

2.3.1 The Cycle routine shall include the logic that is a precondition to the machine sequence,

including logic that indicates initial conditions, indicates initial positions, controls the

initiation of Machine In Cycle (MIC), and controls the Return All (Homing) logic for

machine motions.

2.3.2 The Cycle routine shall include the following functions and output-energize instructions:

1. Cycle_ResetAllMemories – output-energize instruction that resets memories affecting,

storing, or otherwise relating to part status and part quality. Requirements are detailed

below.

2. Cycle_AllReturned – output-energize instruction indicating that all motions are returned

or retracted to the typical home position, based on positional indication consisting of

XIO contacts from each returned sensor input and returned position for analog sensors.

Note: For any actuator that is sensed with only one motion-direction sensor, and that
sensor is an advanced sensor, then an XIC contact from the advanced sensor input
shall be included in the Cycle_AllReturned logic.

3. Cycle_MemoriesAreReset – output-energize instruction indicating that all memories

affecting, storing, or otherwise relating to part status and part quality have been reset or

nullified.

4. Cycle_InitialConditions – output-energize instruction indicating the combination of

conditions required to allow the initiation of machine cycle.

5. Cycle_StationArmed – output-energize instruction, used for each station on an

asynchronous assembly line, indicating and allowing the station to go into cycle. Station

Armed shall be operator-initiated by an HMI pushbutton.

Note: Station Armed allows the machine in cycle (MIC); MIC is a separate
requirement detailed below. MIC for each station on an assembly line is typically
initiated upon Pallet Presence with a part ok to be worked on (but only when the
StationArmed is energized). Operator de-energizing StationArmed can be used to
hold a pallet from cycling until the station is, again, intentionally Armed.

6. Cycle_AllowCycleStart – output-energize instruction indicating combined returned,

initial, and other conditions required to allow machine cycle start or allow the machine

cycle to be restarted.

Note: Machine conditions such as the main air pressure or hydraulic oil temperature
can be programmed in the initial conditions above, here in the allow cycle start, or in
machine faults depending on the application.

7. Cycle_CycleStartPulse. The cycle start logic is application specific.

8. Cycle_AbortPulse. An HMI button-initiate pulse to abort the current machine cycle; the

abort cycle logic shall be included on all machines.

Revision Feb 21, 2017 Page 11 of 66

Programmable Logic Controller

Application Specification SD-1032

9. Cycle_MIC – output-energize instruction indicating and allowing machine in cycle with

requirements as detailed below.

10. Cycle_ReturnAll – output-energize instruction initiating and allowing return-to-home,

or return to initial positions as detailed below.

2.3.3 Machine In Cycle (MIC) shall be the control function, and output-energize instruction,

that makes a machine capable of producing automatic (sequenced) motions. Motion shall

occur only when MIC is energized.

To clarify: MIC shall be the one output-energize instruction that enables sequenced
motions for the duration of the cycle. Auto mode shall not be used throughout the logic to
allow motions. Non-motion processes (such as reading an RFID tag or communicating
with traceability) may be initiated prior to, and/or independent of, MIC.

Note: On an asynchronous assembly line MIC is typically not required to produce
conveyance and non-hazardous pallet control motions.

Note: The Nexteer_Library includes multiple MIC output-energize instructions; all but
one output-energize instruction shall be removed from the logic.

2.3.4 The machine shall be allowed to enter into cycle (MIC shall energize) only when all of

the following conditions are met:

1. Automatic mode is selected.

2. All motions and devices are in their initial state (typically, indicated by all of the

returned sensors being ON).

3. No faults are present on the machine.

4. All safety devices are in the “safe” condition.

5. A new part has been loaded or has entered into the machines.

6. The station is Armed (for stations on an asynchronous assembly line).

2.3.5 Machine cycle shall be initiated by the operator. On single cycle machines, machine

cycle shall be initiated by operator actuation of a hardwired device(s). On continuous

cycle machines, machine cycle should be initiated by an HMI pushbutton. Exception: for

each station on an asynchronous assembly line, Station Armed shall be operator-initiated

by an HMI pushbutton; machine cycle shall be initiated upon the presence of a pallet and

the part is ok to be worked on.

Note: Machine motion shall not occur based on mode selection.

1. Single cycle machines execute one complete cycle for each initiation by the operator.

2. Continuous cycle machines execute repetitive cycles until halted by operator action or a

fault condition. The first cycle shall be initiated by the operator.

3. A Cycle Stop pushbutton (either hardwired or on the HMI) shall be provided on

continuous cycle machines. When the Cycle Stop pushbutton is pressed the machine is

allowed to finish processing the part, return the machine to its normal starting position,

and then MIC is de-energized.

Revision Feb 21, 2017 Page 12 of 66

Programmable Logic Controller

Application Specification SD-1032

4. Logic controlled by a hardwired cycle start device shall include a one-shot to verify that

a failure of the device ON does not cause consecutive cycles to occur.

2.3.6 Reset All Memories shall be the control function, and output-energize instruction, that

resets memories affecting, storing, or otherwise relating to part status and part quality.

To clarify: Memories include all data types (such as DINTs and STRINGs), as well as
BOOL tags that have been sealed-in.

To clarify: Part status and part quality memories include Good Part, Reject Part, part
test results, and any part data storage from the previous cycle. Part status and part
quality memories also include previous cycle data from a pallet on pallet transfer
systems, and shift registers on other part-indexed systems.

Figure 2: Reset All Memories Examples

To clarify: Resetting STRING quality memories is accomplished by filling the string tag
with null characters (ACSII $00) in the data, but is not accomplished by merely resetting
the string length to zero.

Revision Feb 21, 2017 Page 13 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 3: Reset String Memory Example

2.3.7 Logic to initiate Reset All Memories is application specific. At a minimum, Reset All

Memories shall be initiated upon power-up and upon removal of the part (see Figure 4

below).

To clarify: Removal of the part includes the release of a pallet on conveyor lines, or the
initiation of index (shift pulse) on dial tables and indexing machines.

To clarify: Removal of the part includes interruption of a light curtain on operator
unload machines that do not include Part Presence sensing. (It shall be presumed that
the part has been removed).

To clarify: On an automatic part-transfer system that does not include Part Presence
sensing at fixtures, and mechanically allows the part to be removed from the fixture,
removal of the part includes interruption of an interlocked safety gate. (It shall be
presumed that the part has been removed).

Revision Feb 21, 2017 Page 14 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 4: Reset All Memories Logic Rung

2.3.8 The Return All output-energize instruction shall only be enabled when a mode is active.

1. The Return All output-energize instruction can be enabled in Manual and Automatic

mode, however, the Return All output-energize instruction shall not be enabled when

Machine In Cycle is active.

2. When in Manual mode the Return All output-energize instruction shall only be enabled

when Return All pushbutton input remains enabled.

3. When in Automatic mode, the Return All output-energize instruction may be enabled

through one of two methods:

a. when the Return All pushbutton input remains enabled, or

b. as an automatic or sequenced Return All Cycle (initiated by momentarily pressing

the Return All pushbutton).

4. Logic controlled by a hardwired Return All pushbutton shall include a one-shot or pulse

to verify that a failure of the pushbutton or input does not cause machine motion.

2.3.9 Additionally, special-purpose machine cycles such as a Calibration Cycle, shall only be

enabled when in automatic mode.

Revision Feb 21, 2017 Page 15 of 66

Programmable Logic Controller

Application Specification SD-1032

Guidance:

2.3.10 The Cycle routine may include logic for cycle-related indicator lights.

2.3.11 The retentive CycleTime timer provided for HMI display may be programmed in the

Cycle routine or an HMI routine.

2.3.12 Logic to verify operator tasks such as part pre-assembly may be programmed within the

Cycle routine or within the Sequence routine. However, operator tasks that are required

to occur in a specific sequence or specific order shall be programmed within a sequence

routine. Refer to the Machine Sequence details below.

2.4 Signal Conditioning (R04_Analog Routine)

Requirements:

2.4.1 Analog signals shall be verified to move from a “reject” value to a “within-limits” value.

The signal shall be verified to have returned to the reject value or range (typically to a

known initial position) as part of initial conditions in order to allow the start of the next

cycle.

To clarify: The logic shall detect and prevent a common failure from classifying the part
as a Good Part, such as a broken wire that allows a signal to drift into the good part
range.

Guidance:

2.4.2 The analog routine should include the logic that controls the scaling and calculating of all

analog and similar signals.

2.4.3 The analog routine may include the logic to compare the signals to limits, including the

back check logic.

Revision Feb 21, 2017 Page 16 of 66

Programmable Logic Controller

Application Specification SD-1032

2.5 Machine Sequence (R05_Sequence Routine)

Requirements:

2.5.1 The Sequence routine shall include all of the logic that steps through the machine cycle.

The machine sequence includes stepping through all sequenced motions, stepping

through the machine processes, and initiating each process-based action. Note: Examples
of process-based action steps include initiating a quality check, or initiating a
communication.

To clarify: All sequence control logic shall be in the sequence routine. As an example:
The logic for raising a cylinder and then engaging a rod-lock shall include two separate
sequence steps programmed within the sequence routine – the rod-lock shall not be
controlled solely by the cylinder controlling sequence step plus time-delay logic located
within the OutputMotions routine.

2.5.2 The Sequence routine shall include an output-energize instruction for each sequence-

driven task.

To clarify: Each sequence-driven task includes: each machine function, each step, each
process, and each command originated from the sequence. Each shall have an individual
output-energize instruction in the Sequence routine. One output-energize instruction shall
not initiate more than one machine task. Two output-energize instructions are required
even when identical machine conditions initiate each tasks.

As an example: The example process requires that the same conditions both retract the
Notch Punch and raise the Front Tooling Slide. The sequence routine includes a separate
output-energize instruction for both the Retract Punch step and the Raise Slide step (see
Figure 5, 6, and 7 as follows).

Figure 5: Sequence Structure - Preferred – Two Machine Tasks / Two Rungs

Revision Feb 21, 2017 Page 17 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 6: Sequence Structure – Allowed – Two Machine Tasks / Two Instructions

Figure 7: Sequence Structure – NOT ALLOWED – Two Machine Tasks / One Instruction

2.5.3 The Sequence routine shall include only sequence and process steps.

To clarify: Sequence logic includes the output-energize instructions for process steps
such as initiating data monitoring, initiating sending traceability data, or initiating
quality limit checks. However, the logic that performs the quality limit checks is to be
programmed within the Quality routine - not within the sequence routine.

2.5.4 Each sequence-driven task shall be verified to have been completed within the sequence

routine.

To clarify: Each output-energize instruction within the sequence routine can be
considered as an “output” from the sequence routine to another routine. Similarly then,
each contact or signal from other routines (or input devices) into the sequence routine
can be considered as a “completed” input to the sequence from the other routines.
Therefore the sequence routine logic needs to verify that each output from the sequence
routine receives a completed input into the sequence.

As an example: When an RFID write is initiated by the sequence, a write-completed
contact from the RFID routine must be used within the sequence routine to ensure a
properly cycled part.

Revision Feb 21, 2017 Page 18 of 66

Programmable Logic Controller

Application Specification SD-1032

2.5.5 Each sequence step rung shall include a normally-opened (XIC) contact from Machine In

Cycle MIC. The first automatic sequence step is nearly always initiated only by MIC.

Exception: Logic included in the sequence routine that verifies operator tasks such as part

pre-assembly, and are not required to occur in a specific sequence, typically should not

include the MIC contact.

2.5.6 The Sequence routine shall include a reset sequence output-energize instruction named

“Seq_ResetSequence”. The reset sequence output-energize instruction shall be the first

solved rung within the Sequence routine (for solve-order reasons). The reset sequence

output-energize instruction shall have a normally-closed (XIO) contact included in each

sequence step rung, to reset the entire sequence. The ResetSequence rung shall be

structured as follows (see Figure 8 below):

Figure 8: Reset Sequence Logic

2.5.7 The sequence shall be reset upon:

- loss of MIC.

- after cycle complete.

- the first scan after a cycle is aborted (an AbortPulse).

- selection of manual mode.

2.5.8 From the Nexteer_Library logic, branches that include an AFI instruction are shown as

optional and are dependent upon the application. The sequence can be required to reset

upon:

- paused cycle (loss of MIC) while a reject part is present.

- detection of an Immediate Stop fault.

Revision Feb 21, 2017 Page 19 of 66

Programmable Logic Controller

Application Specification SD-1032

2.5.9 Operator tasks (such as part pre-assembly) that are required to occur in a specific

sequence shall be programmed within a sequence routine(s).

1. The assembly sequence shall follow the correct assembly order.

Note: Nexteer’s manufacturing engineer purchasing the equipment details the
required assembly sequence.

2. All associated sensors and error-proofing shall be monitored during the entire process

step(s). Refer to the Hand Assembly of Parts portion of Annex C.

Guidance:

2.5.10 Logic in the sequence routine should be kept simple.

Note: Adherence to simple logic and format will assist the destination plant support
personnel to more-readily understand the machine process.

2.5.11 Refer to Annex C for application details relating to more-complex, special, multiple, or

customized sequence examples.

2.5.12 Step numbers should be in ascending, consecutive order. Gaps in the numbering scheme

are allowed (such as step numbering 10, 20, 30). Sequence steps that execute

simultaneously may have the same step number.

2.5.13 The sequence routine can include reject-control logic as detailed in the reject-handling

requirements of the Part Quality Logic section below.

2.5.14 The logic templates include common reset-sequence examples. Additional sequence reset

conditions that should be included in the sequence reset logic depend on each machine’s

application. Branches (from the Nexteer_Library logic) that include an AFI instruction

are shown as optional and may be removed when not implemented by the application.

Revision Feb 21, 2017 Page 20 of 66

Programmable Logic Controller

Application Specification SD-1032

2.6 Part Quality Logic (R06_Quality Routine)

Requirements:

2.6.1 The Quality routine shall include all of the logic that determines the part quality, logically

indicates the part quality status, and controls operator reject-part handling (based on the

part quality status).

2.6.2 Part quality logic shall be designed to prevent qualifying a Reject Part as a Good Part.

2.6.3 The part quality logic shall reset Good Part status upon removal of the part.

Note: Use of a contact from the Reset All Memories as detailed in the Cycle routine
above meets this specification requirement.

1. Where no Part Present signal is provided, the part quality logic shall reset a Good Part

status upon change of mode.

2. Where no Part Present signal is provided at fixtures of an automatic part-transfer system

that mechanically allow the part to be removed, the part quality logic shall reset Good

Part status upon the opening of an interlocked safety gate for each fixture that can be

accessed. Note: On automatic part-transfer systems, solenoid-locking interlock switches
should be considered to minimize the number of rejected (scrapped) parts.

2.6.4 The part quality logic that interfaces with a part-quality-determining-device shall be

designed to verify the device is operating as required. Devices and interface signals

include sensors, auxiliary equipment (such as instrumentation), analog signals, and

communication signals.

Refer to the Control Functions in the Event of Failure items under the Critical Principle
section above.

2.6.5 The control system, including instrumentation and sensors, shall provide a PLC Good

Part input when the desirable component, dimension, or feature is detected.

1. The logic shall detect that the Good Part input transitions from OFF to ON, or from an

out-of-limit value to a within-limit value. Note: This input transition shall occur during
the part-process, not at power-up of the system.

2. The logic design shall give the highest priority to classifying a part as a Reject Part,

over classification as a Good Part.

To clarify: At the logic scan for part quality check, the logic shall check for a reject
first. As an example: If the instrumentation provides the PLC with both a Good Part
and a Reject Part input, at the part quality check scan the logic shall classify a part
as a Reject Part because the Reject Part input is ON. At the part quality check scan
the logic shall then only classify as a Good Part if not a Reject Part and if the Good
Part input transitions to ON. At the part quality check the logic shall also classify a
part as a Reject Part if neither input transitions ON.

Revision Feb 21, 2017 Page 21 of 66

Programmable Logic Controller

Application Specification SD-1032

2.6.6 Logic for part-quality data storage (the logic that stores or saves the part quality data into

tags for use by traceability, or onto RFID) shall be located in the Quality routine.

Note: The logic that transfers the status byte(s) to traceability or writes the RFID data
shall be in the appropriate traceability or RFID routines respectively.

2.6.7 Means shall be provided to confirm that reject parts are disposed of or handled properly.

Reject part status and data shall be written to traceability or to RFID, and the write-

complete verified, prior to the logic allowing any reject disposal, reject-handling, and

reject removal as detailed below.

2.6.8 The Reject Part Present output-energize instruction shall seal-in until the reject-handling

reset sequence is completed. The Reject Part Present output-energize instruction shall be

maintained during power loss (typically through use of an OTL).

2.6.9 When error proofing includes communication of part status (such as communication to

traceability or to on-the-part RFID) the logic shall require the following reject-handling:

1. The logic shall annunciate a rejected part is present.

2. The communication of reject part status shall be included in the machine sequence

logic.

3. The machine should (typically) stop processing the part upon a reject and return to the

home position.

4. The logic shall verify that the part status has been communicated to the traceability or

on-the-part RFID system.

5. Upon completion of the reject part communication, the Reject Part Present output-

energize instruction may be reset.

2.6.10 When error proofing includes hand-unload to a reject chute or bin, the logic shall require

the following reject-handling reset sequence:

1. The logic shall annunciate a rejected part is present and prohibit the machine from

cycling again until the acknowledgement process has been completed.

2. The machine should (typically) stop processing the part upon a reject. Note: Most
machine motions are allowed to return to the home position.

3. The reject part shall remain clamped, or, where no part clamp is provided, at least one

machine motion shall stay advanced to mechanically prevent the removal of the part.

4. The logic shall require the operator to put the machine in Manual mode and unclamp

the part (or retract the appropriate motion).

5. The logic shall verify that the part has been removed from the machine, which may be

accomplished by verifying that the part present sensor switches to an OFF state. If a part

present sensor does not exist, other means, such as a light curtain being broken, may be

used to indicate part removal.

Revision Feb 21, 2017 Page 22 of 66

Programmable Logic Controller

Application Specification SD-1032

6. The logic shall not permit the machine to be switched back into Automatic mode until

the reject part has been placed into the reject chute or bin. The correct operation of the

reject chute sensor shall be verified (such as logic requiring a transition from an OFF

state to an ON state).

7. Upon completion of the reject-handling reset sequence the Reject Part Present output-

energize instruction may be reset. The machine is then permitted to go into Automatic

mode.

2.6.11 For machines that include automatic unload of reject parts the logic shall meet the

following reject-handling reset sequence.

1. The part shall be placed in a reject chute or repair loop, depending on the application.

2. The reject chute sensor must transition from an OFF state to an ON state when the part

passes down the chute. The sensor shall transition back to an OFF state in order to

complete the acknowledgement process.

3. Upon completion of the reject-handling reset sequence the Reject Part Present output-

energize instruction may be reset and the machine may now be permitted to begin

another cycle.

Guidance:

2.6.12 Applications may require a part to be rejected when there is a loss of MIC. Depending on

the process, or depending on what point in the process the machine drops out of cycle, the

part may be required to be rejected even though a quality check may not have occurred.

Applications may require a part to be rejected if the cycle is interrupted after a particular

process step has been started but not completed. Examples include heat treating, welding,

and other processes.

2.6.13 Back check logic for part quality-related inputs including discrete, analog, or

communication values may be programmed in the Quality routine although they are

typically programmed in a fault routine.

2.6.14 Applications may require the part status to be classified as Part In Process (typically upon

cycle initiation) until classified as a Reject Part or Good Part.

2.6.15 Logic to communicate the part status to traceability or RFID is typically not programmed

in the Quality routine.

2.6.16 Logic for quality-related indicator lights may be programmed in the quality routine or in

an output-related routine.

Revision Feb 21, 2017 Page 23 of 66

Programmable Logic Controller

Application Specification SD-1032

This page intentionally blank.

Revision Feb 21, 2017 Page 24 of 66

Programmable Logic Controller

Application Specification SD-1032

2.7 Solenoid Control (R07_OutputMotions Routine)

Requirements:

2.7.1 The OutputMotions routine shall include the logic that controls all machine solenoid-

controlled motion.

1. Logic that controls machine solenoid motion includes collision avoidance, auto allow,

enable motion, dwell timers, fault motion timers, and the motion not clear HMI display

output-energize instructions as detailed within this solenoid control section.

2. The OutputMotions routine shall not include logic that coordinates the sequential

control of two or more related outputs. Sequence logic shall be in the Sequence routine.

2.7.2 Motion shall be prevented when selecting a mode, and motion shall be prevented when

switching between modes. A separate action by the operator (clearly identified as a

motion initiating action) is required in order for any motion to occur.

2.7.3 Logic for each motion shall include collision avoidance output-energize instruction(s).

Note: Collision avoidance may be one output-energize instruction per actuator, or two
output-energize instructions (one for each direction of an actuator).

Note: Other terms used for “collision avoidance” include “clear to move”, “motion
interlocks,” or “motion constraints.”

1. Motions shall have minimal collision avoidance logic. Collision avoidance shall only be

used to prevent damage to the equipment or to prevent damage to the part (see Figure 9

below).

Figure 9: Examples of Minimum Collision Avoidance Logic

2. Collision avoidance logic shall be active in both manual and automatic modes.

Note: Collision avoidance includes a “Clear To” contact in all motion-initiation
branches of motion-control logic (see Figure 10 next page).

Revision Feb 21, 2017 Page 25 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 10: Example Use Of Collision Avoidance Logic

2.7.4 Logic for each direction of motion shall include an auto allow output-energize

instruction. The auto allow logic should be kept simple per the following:

1. The auto allow for the motion towards the work position (moves away from the home

position) is typically enabled by a normally-open (XIC) contact from the motion-

initiating sequence step (a) and a normally-closed (XIO) contact from the sequence step

that initiates the motion towards the home position (b) (see Figure 11 below).

Figure 11: Example Auto Allow Logic (Motion Towards the Work Position)

2. The auto allow for the motion that returns to the home position is typically enabled by a

normally-open (XIC) contact from the motion-initiating sequence step and a normally-

closed (XIO) contact from Cycle Complete (see Figure 12 below).

Figure 12: Example Auto Allow Logic (Motion Toward Home Position)

3. Machine sequences that require a motion to be enabled multiple times within the

sequence, or requires enabling a motion at varying process steps dependent on such

conditions as model selection or part-reprocess, require additional contacts in each

motion’s auto allow logic.

2.7.4 (1-a) 2.7.4 (1-b) 2.7.4

2.7.4 (2)

2.7.3 (2)

Revision Feb 21, 2017 Page 26 of 66

Programmable Logic Controller

Application Specification SD-1032

2.7.5 Each solenoid control rung shall be structured as follows (see Figure 13 below):

Figure 13: Example Solenoid Control Rung

1. The top branch of the solenoid control rung shall include MIC and the auto allow to

initiate the output.

Note: If the output is required for multiple sequence steps during the cycle, these
multiple sequence conditions shall be programmed in the auto allow rung prior to the
solenoid-control rung.

2. The second branch of the solenoid control rung shall include the manual initiation of the

output.

3. The third branch of the solenoid control rung shall include the Return All initiation

logic (for return-direction motions).

4. The bottom branch of the solenoid control rung shall include the solenoid seal-in logic,

including a seal-in around the Clear To move contact.

2.7.6 Solenoids shall remain energized (seal-in) until the opposite motion is initiated.

1. Exception 1: A sequence step that needs to de-pressurize a cylinder by de-energizing an

output without energizing the opposite motion direction.

2. Exception 2: Certain hydraulic motion solenoids may require the solenoid to not seal-

in, since a continual energized solenoid can overheat the hydraulic fluid.

2.7.7 Solenoids shall remain energized (seal-in) based upon the actuation of the positional

sensor indicating completion of the associated motion.

Note: Solenoid seal-in is required for all motions; the exceptions listed below are
exceptions to the “positional sensor” portion of this specification item.

1. Exception 1: A normally-closed (XIO) contact from the opposing-direction positional

sensor should be used, indicating a start of the motion, when the positional sensor

indicating completion of the motion does not exist.

2. Exception 2: Positional sensor contacts shall not be used for solenoid seal-in when a

double-solenoid, detented valve is being controlled. Since a detented valve

mechanically seals-in when electrically energized, the logic should seal-in upon

2.7.5 (1)

2.7.5 (2)

2.7.5 (3)

2.7.5 (4)

Revision Feb 21, 2017 Page 27 of 66

Programmable Logic Controller

Application Specification SD-1032

command such that the logical-state of the output, and the electrical-state of the output,

are consistent with the actual mechanical condition of the valve.

2.7.8 Conditions that remove power to the output include logical E-Stop conditions that

remove logical-power when hardwired power has been removed from the solenoid. The

logical E-Stop contact also breaks the solenoid seal-in when the machine is powered

down (see Figure 14 below).

2.7.9 All outputs that initiate opposing motions shall be logically linked such that both motions

cannot be energized at the same time (see Figure 14 below).

Figure 14: Remove Solenoid Power

2.7.10 A motion dwell timer for each position of motion shall be programmed in the rung

immediately following the solenoid control rung. Timer presets may be adjusted for

sensor debounce as needed.

Note: The Nexteer_Library dwell timers are initially preset to 0000 to indicate that
timers can be set as low as practicable based on the application, thus minimizing cycle
time.

2.7.8

2.7.9

Revision Feb 21, 2017 Page 28 of 66

Programmable Logic Controller

Application Specification SD-1032

2.7.11 Logic that controls single-solenoid motion valves shall include all rungs (collision

avoidance, auto allow, enable motion, dwell timers, fault motion timers, and motion not

clear HMI display output-energize instructions) for each motion direction, consistent

with logic controlling double-solenoid valves (see Figure 15 next page).

1. The branch controlling the solenoid output-energize instruction does not include a

normally-closed (XIO) contact driven by the opposite-direction output (since the

opposite-direction output does not exist).

2. The rung enabling the non-solenoid direction of motion contains the Out_Enable

output-energize instruction to logically link (disable) the solenoid.

3. The rung enabling the non-solenoid direction of motion does not contain seal-in logic.

Figure 15: Example Single Solenoid Motion Valve Logic

2.7.11 (1) 2.7.11 (2)

2.7.11 (3)

2.7.11 (2)

Revision Feb 21, 2017 Page 29 of 66

Programmable Logic Controller

Application Specification SD-1032

Guidance:

2.7.12 In addition to the motion dwell timers (provided for sensor debounce as required above),

process delay or process dwell timers may be programmed in the OutputMotion routine,

or they may be programmed within the Sequence routine.

2.7.13 Diagnostic logic, including motion fault timers, as shown in the templates, may be

programmed in rungs following the solenoid control rungs, or within the Immediate Stop

fault routine.

2.7.14 The auto allow output-energize instructions may be eliminated for machines that require

only minimal (or simple) auto allow logic meeting all of the following:

1. The machine has minimal motions

2. The auto allow logic for all motions includes only two sequence step contacts per

motion (consistent with item 2.7.4 above), and

3. All auto allow output-energize instructions are eliminated. The two sequence step

contacts per motion (consistent with items 2.7.4 above) shall be programmed in each

appropriate solenoid control rung.

Revision Feb 21, 2017 Page 30 of 66

Programmable Logic Controller

Application Specification SD-1032

2.7.15 The OutputMotions routine may include conventional motor-starter controlled motions,

or the motor-starter logic may be in another output-related or device related routine.

2.7.16 Motor starter logic format for conventional motors (run independent of machine

sequence) should be consistent with the format shown below (see Figure 16 below).

Figure 16: Example Motor Starter (Start/Stop) Logic

2.7.17 Motor starter logic format for sequence-controlled motors should be consistent with the

solenoid control format detailed in this Solenoid Control section, including rungs such as

the collision avoidance, auto allow, solenoid control, and motion timer rungs where

applicable (see Figure 17 below).

Figure 17: Example Sequence-Controlled Motor Starter Logic

2.7.18 Other general outputs may be programmed in the OutputMotions routine.

Note: Machine motions related to servos are typically programmed in a separate servo
routine. Indicator lights are typically programmed in the routines that relates to the
light’s purpose.

Revision Feb 21, 2017 Page 31 of 66

Programmable Logic Controller

Application Specification SD-1032

2.8 Machine Diagnostics – Display Control (multiple routines)

Nexteer’s machine diagnostics, display hierarchy, and diagnostic control philosophy are

described in Annex A, entitled “Machine Diagnostic Scheme and Hierarchy.” An understanding

of the Annex A’s terms will aid in an understanding the following machine diagnostics

requirements. The use of Nexteer fault and message routines plus Nexteer HMI screens support

compliance with the requirements of this clause.

Requirements:

2.8.1 The logic for fault display control shall be located in the Fault Control routine. The logic

for message display control shall be located in the Message routine.

2.8.2 All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault”

button/switch. The “Reset Fault” button/switch shall reset all fault conditions that no

longer exist. The “Reset Fault” button/switch shall only reset fault conditions when the

machine is not in cycle.

Reference: To view all faults when multiple faults exist, the HMI fault history screen must
be selected. Selection of the fault history screen is not controlled by the logic. Refer to
SD-1020.

2.8.3 When multiple machine messages exist, the logic shall automatically scroll through the

messages, displaying each for 3 seconds. After the last message has been displayed the

scrolling shall start again at the first message.

Guidance:

2.8.4 Fault display text requirements, naming and numbering, is described in SD-1020, Nexteer

Automotive Human Machine Interface Application Specification.

2.8.5 For equipment with a PLC that supports the character set in the language of the country

of destination, the fault and message HMI display text is allowed to be a text string stored

within the PLC. If these PLC text strings are used for display, an STOD instruction shall

be added to each fault and message rung.

Note: The dual language requirements from SD-1020 apply to use of these text string
displays.

Reference: The Nexteer_Library routines Fault_TOOLS and Message_TOOLS include
examples using the STOD instruction and associated tag array for storing the string text.

Reference: The STOD instruction is a simple method for design-aid-display of the
embedded variable text string associated with the fault. The STOD instruction does not
perform any logical function in this application.

Revision Feb 21, 2017 Page 32 of 66

Programmable Logic Controller

Application Specification SD-1032

2.9 Machine Diagnostics – Conditions and Detection logic

Requirements:

2.9.1 Any condition that stops a cycle shall create and display a machine fault.

2.9.2 Any condition that prevents the cycle from starting shall be displayed as a fault, message,

or status.

2.9.3 All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault”

button/switch.

2.9.4 All faults shall be classified as either “Immediate Stop” faults or “Cycle Stop” faults. The

logic for Immediate Stop fault conditions and detection shall be located in the

Fault_ImmedStop routine. The logic for Cycle Stop fault conditions and detection shall

be located in the Fault_CycleStop routine.

2.9.5 Immediate Stop faults shall immediately remove power to MIC, stop commanding all

motions, and stop processing of the part.

2.9.6 Cycle Stop faults shall allow the machine to finish the current cycle, returning the

machine to its normal start position, and then drop MIC. Cycle Stop faults that are

detected prior to the start of a cycle shall prohibit the start of cycle.

2.9.7 Emergency Stop inputs, safety gate inputs, and indication of situations that could cause

harm to an operator or cause harm to the machine (such as a fault from a servo system)

shall be classified as Immediate Stop faults.

2.9.8 All machines, and every station on a multiple station system, shall include an immediate

stop cycle overtime fault.

1. The cycle overtime timer shall be active whenever the machine is in cycle.

2. On single-cycle machines the timer for the cycle overtime fault is driven by MIC (only).

3. For continuous cycle machines, MIC also drives the fault timer, but the fault is inhibited

between cycles. The cycle overtime fault shall not be inhibited by a single condition

that can fail, such as a single limit switch input contact, because such a failure can lead

to inhibiting this safety-related cycle overtime fault.

Note: Resetting the cycle overtime timer with a pulse from a limit switch input is an
allowed method to implement a single condition into this cycle overtime fault.

4. Machines which have multiple cycles (such as MIC and Return All Cycle) shall include

a cycle overtime fault for each cycle.

Note: All cycles are allowed to enable one cycle overtime timer and fault.

Revision Feb 21, 2017 Page 33 of 66

Programmable Logic Controller

Application Specification SD-1032

2.9.9 All motion sensors shall be back checked and generate an Immediate Stop fault upon

failure detection.

1. For all motions that have more than one positional sensor, a Motion Sensor Error fault

shall be included. The fault shall be detected if the motion is both “advanced” and

“retracted”, or if the sensors indicate the motion to be at more than one position (such as

mid-position and advanced).

Note: Motion Sensor Error faults shall be provided for operator hand-powered
motions such as a hand-clamp.

2. For all motions that have only one positional sensor, back checking shall be

accomplished by two opposite-state uses of the sensor. A sensor contact shall be used in

the machine’s all returned logic, and an opposite-state contact shall be used in the

motion dwell timer. This motion dwell timer shall be included in the sequence logic to

indicate the completion of a sequence step. Thus, upon a sensor failure, two opposite-

state uses of the sensor will either generate a motion timer fault or a Not Returned

indication.

2.9.10 An Immediate Stop motion overtime fault shall be included for each logic-controlled

actuator. Exception: A motion overtime fault is not required for actuators that include

following-error faults, such as servo controlled actuators.

Note: The motion overtime timers may enable a single fault per actuator or two faults,
one for each direction of motion.

2.9.11 All non-motion sensors (such as part quality sensors, part present, and pick-bin sensors)

shall be back checked. Failures that are detected during a machine cycle shall cause an

Immediate Stop fault upon failure detection. Failures that are detected between machine

cycles shall cause either a Cycle Stop fault (preferred) or an Immediate Stop fault.

2.9.12 The logic for message conditions and detection shall be located in the Message routine.

2.9.13 The logic for machine status control shall be located in the MachStatus routine. The logic

for part status control shall be located in the PartStatus routine. The logic for operator

prompt control shall be located in the OperPrompt routine.

Guidance:

2.9.14 PLC Battery Low should be indicated as a machine message that does not prohibit

machine cycle. Also, when the PLC Battery Low condition is present, a resettable Cycle

Stop fault shall be triggered every 60 minutes until the battery is replaced.

2.9.15 The Nexteer_Library’s Fault_ImmedStop and Fault_CycleStop arrays (sized for 128

immediate stop faults and 64 cycle stop faults) may be increased in sized for applications

with numerous faults.

Revision Feb 21, 2017 Page 34 of 66

Programmable Logic Controller

Application Specification SD-1032

2.10 Routines Required On All Machines

Requirements:

2.10.1 The routines provided in the Main Program of the

Nexteer_Library file shall be used for all

applications (see Figure 18).

2.10.2 These required routines are to be programmed on

all equipment, even when the equipment does not

include any logic within the routine.

2.10.3 For single station equipment, the routines provided

in the Main Program of the Nexteer_Library file

shall be programmed in the MainProgram.

2.10.4 For multiple station equipment with multiple

programs, the routines provided in the Main

Program of the Nexteer_Library file shall all be

programmed, but are allowed to be distributed

between the MainProgram (sometimes called the

ConveyanceProgram) and the Station programs.

- Refer to Figure 19 on the following page for an

example of routine distribution within a multi-

station controller organizer.

- The routines provided in the Main Program of

the Nexteer_Library file are typically

duplicated within each station’s program.

Figure 18: Nexteer_Library

Controller Organizer

Revision Feb 21, 2017 Page 35 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 19: Multiple Station Controller Organizer Views

Revision Feb 21, 2017 Page 36 of 66

Programmable Logic Controller

Application Specification SD-1032

3. Required Logic Design - Application Specific

Nexteer logic requirements that are associated with a routine are detailed in Section 2 above. The

following topics are additional application-specific requirements.

3.1 Light Curtain Interruption

Operator and machine safety is ensured by appropriately applied safety devices and
hardwired safety circuits. Therefore, the logic based on an interruption of the light
curtain does not relate to safety, but instead relates to part quality and properly
processing the part since the logic needs to consider that physical power has been
removed from hazardous actuators and devices.

3.1.1 Interruption of a light curtain during the machine cycle shall cause an Immediate Stop

fault. Typically the Light Curtain Blocked During Cycle fault is energized upon the first

scan that the light curtain is not clear.

Figure 20: Light Curtain Interruption

3.1.1

3.1.2.1

3.1.2.2

Revision Feb 21, 2017 Page 37 of 66

Programmable Logic Controller

Application Specification SD-1032

3.1.2 A deviation that delays the fault, and allows the light curtain to be momentarily

interrupted during a cycle, shall meet all of the following requirements:

1. The logic design shall ensure part quality and proper machine sequence. Design

consideration needs to be given to ensure that the light curtain may be momentarily

interrupted only during those process steps where the part will still be properly

processed with hardware power momentarily removed.

To clarify: Most process steps that effect or work directly on the part will make a
reject part if hardware power is momentarily removed, and therefore light curtain
interruption during these steps shall be detected immediately and cause an immediate
stop fault.

To clarify: To avoid nuisance stops and loss of production, momentary interruption of
the light curtain during initial part-positioning machine motions (such as part clamps
and part shuttles) can be considered for inclusion in any logic that delays the Light
Curtain Blocked immediate stop fault.

2. The MIC contact and branch enabling the Fault_StopWhenLCBlocked output-energize

instruction may be removed or ignored with an AFI.

3. The Fault_LightCurtainBlockedDelay timer preset shall be set to 2000 or less (a

maximum of 2 seconds).

3.2 Motor Starter Control

3.2.1 Motor start control logic shall be designed such that resetting of an overload device does

not restart the motor (see Figure 21 below).

1. For applications where a normally open contact from the motor starter is wired to an

input, a normally-open (XIC) contact from this input shall be used in the seal-in branch

of the motor starter’s output-energize instruction.

2. For applications where the motor starter overload is wired to an input, a normally-open

(XIC) contact from this input shall be used as a condition to prohibit energizing the

motor starter’s output-energize instruction.

Figure 21: Example Motor Starter Logic

3.2.1 (2)

3.2.1 (1)

Revision Feb 21, 2017 Page 38 of 66

Programmable Logic Controller

Application Specification SD-1032

3.3 Shift Register / Indexing Logic

3.3.1 Data transfer in a shift register, whether stored in an array or a bit-register such as a

DINT, shall be initiated by a shift pulse conforming to the following requirements.

1. The shift pulse shall occur once per index cycle. Multiple shift pulses shall not occur

because of sensor contact bounce, programmable device power up/down, or any other

unintended cause. Refer to the IndexData routine within the Library_Routine program

of the Nexteer_Library file.

2. When index mechanisms are used, the shift pulse should occur when the indexing

mechanism begins to transfer parts from one station to another.

3.3.2 Logic shall be included to ensure the correctness of shift register part quality data; the

shift register logic shall prevent qualifying a Reject Part as a Good Part under the

following conditions.

1. Logic shall prevent against accepting Good Part status based on the reloading of PLC

memory (reloading of old or stale data).

2. Logic shall also prevent against accepting Good Part status based on memory which can

be invalid due to an unknown index (such as occurs when a dial table is indexed while

power is off).

Four approved methods of ensuring the correctness of shift register part quality
data include:

- resetting the shift register data (classifying all parts as rejects) on PLC power-
up (first scan logic), or

- use of a 10-turn encoder connected to a dial table indexer (to detect an index
without power), classifying all parts as rejects when powered-up out of the last
known position, or

- dial table fixture identification (such as RFID or barcode), read at a minimum
of one location, such that the shift register (or array pointer) can be reliably
established even under such conditions as clutch overload or manual-index with
power removed, or

- part identification (such as on-the-part RFID or barcode) read at load, tracked
with all other shift register part data, and read again at unload prior to unload.
The part shall be classified as a Reject Part if the part at unload is not the part
that had been loaded to that pallet or fixture.

Revision Feb 21, 2017 Page 39 of 66

Programmable Logic Controller

Application Specification SD-1032

3.4 Pallet Release / Pallet Memory

3.4.1 Logic for part-quality data storage, on asynchronous assembly lines with data tables (or

arrays) that use the pallet number as the table-pointer, shall prevent part-quality data from

being written to inaccurate locations in the data table.

1. The logic shall prevent storing (or memory of) a pallet number(s) which can become

inaccurate after the non-controlled transfer of pallets (such as the pushing the solenoid

override of a valve).

2. The logic shall reset the station’s part-quality memories (both within the station logic

and within conveyance pallet control logic) consistent with the Reset All Memories

requirements within the Cycle routine section of Section 2 above.

3.5 Indicator Lights

3.5.1 Logic controlling indicator lights is typically programmed in routines associated with the

purpose of the light.

3.5.2 Test Lights logic shall be provided for all operator indicator lights. Note: Operator
indicator lights include lights on the operator control station and multi-colored pilot
lights provided at manual load / unload locations.

3.5.3 Logic for the manual load /unload station multi-colored LED pilot light (refer to SD-004)

shall be designed based on the following criteria at a minimum. Note: GREEN and
YELLOW may be used to indicate additional conditions; however RED shall only
indicate those conditions stated below.

1. “GREEN”: Solid Green shall indicate a Good Part. The light shall energize when the

machine cycle has completed, and stay energized until any of the following conditions

occur: either the part is unloaded, or the machine is put into Manual Mode, or the

machine is powered-down.

2. “RED”: Solid Red shall indicate a Reject Part; Flashing Red shall indicate the machine

has stopped because of a fault. When indicating a Reject Part the light shall remain

energized until the reject part has been handled appropriately. Note: Flashing Red
typically indicates an Immediate Stop fault. However, on continuous cycle machines
Flashing Red may indicate a Cycle Stop fault.

3. “YELLOW”: Solid Yellow shall indicate Machine-In-Cycle (refer to the Machine-In-

Cycle section of this specification).

Revision Feb 21, 2017 Page 40 of 66

Programmable Logic Controller

Application Specification SD-1032

3.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIs)

This Multiple HMI section details the motion-control logic requirements for multi-station

synchronous-transfer systems with multiple HMIs, where machine motion can be initiated from

more than one HMI.

3.6.1 Manual/Off/Auto selection is required on each HMI station that can initiate machine

motion.

3.6.2 All station HMIs must have Auto selected to allow initiation of any automatic or manual

motion on the machine from the main control HMI. Manual and Off selections from

station HMIs shall disable automatic and manual mode selection at the main control

HMI.

3.6.3 When Off is selected at a station, no motion for that station shall be permitted (whether

main or local initiated), and machine index or transfer shall not be permitted (whether

main or local initiated).

Note: This Multiple HMI section does not apply to asynchronous transfer systems such as pallet-
and-free conveyor lines. This section also does not apply to HMI stations that have been
included solely for remote display purposes.

Revision Feb 21, 2017 Page 41 of 66

Programmable Logic Controller

Application Specification SD-1032

This page intentionally blank.

Revision Feb 21, 2017 Page 42 of 66

Programmable Logic Controller

Application Specification SD-1032

A. Annex A - Machine Diagnostics Scheme and Hierarchy

 General

Nexteer’s Production and Operations require machine diagnostics and display consistent between

all machines. Any condition that stops a cycle, or prohibits a cycle from starting, needs to be

detected and displayed for operations on the operator interface. Conditions which stop or prohibit a

cycle can be relative to the part, the machine, auxiliary devices, and the operator. Design

consideration needs be given to failures related to the part, failures related to the machine, failures

related to auxiliary devices, and incorrect operator action.

All machine diagnostics, from simple to complex, inherently use logical hierarchy for collecting

and displaying information. Nexteer specifications use the following terminology and hierarchy

within its specifications, guidelines and templates.

 Terminology & Hierarchy:

Faults:

Faults are machine and device conditions. Faults require operator intervention; faults require

operator reset (via a Fault Reset button) – so therefore logic for faults seals-in and captures the fault

condition for machine diagnostics and potentially for part diagnostics. The fault display object is

programmed in a location on the global common screen, and placed in the same location on every

HMI screen. The display text is stored in the HMI, through an alarm list object, plus use of an alarm

history screen (refer to SD-1020). Nexteer’s specification require faults to be grouped into either an

Immediate Stop or a Cycle Stop

Immediate Stop Faults:

Immediate Stop Faults are those machine conditions that require the machine logic to instantly stop

part processing, immediately stop the machine cycle, and/or immediately stop all machine motion.

Immediate stop faults can include part conditions that prohibit the part from being processed

further. If the part condition indicates that there is no value in further processing the part, then the

part condition can be an immediate stop fault. A reject part can be either an immediate stop fault or,

more-typically, a cycle stop fault depending on the machine’s reject handling.

Example Immediate Stop Faults: Light Curtain Blocked During the Cycle, Machine Cycle
Overtime, sensor error faults, motion overtime faults, and certain part-quality faults.

Cycle Stop Faults:

Cycle Stop Faults are those machine conditions that do not require the machine to instantly stop,

therefore, the logic allows the machine to finish processing the part, or finish the current cycle,

and/or return the machine to its normal start position.

Cycle stop faults can include part conditions that allow a part to be completely processed and return

the machine to its home position. Cycle stop faults can also include part quality faults that allow the

machine to return to the home position without further processing of the part. A reject part is

typically a cycle stop fault, although it can be an immediate stop fault, depending on the machine’s

reject handling.

Example Cycle Stop Faults: Between-cycle back check faults, feed track low level, traceability PC
Heartbeat Timeout, and certain part-quality faults.

Revision Feb 21, 2017 Page 43 of 66

Programmable Logic Controller

Application Specification SD-1032

Machine Messages:

Machine messages (typically referred to just as “messages”) are machine and device conditions.

Messages are general machine operating conditions with less significant impact concerning the

machine or the part and are not considered faults. A message indicates a condition that should be

corrected by operator intervention such that subsequent nuisance machine cycle stop faults can be

avoided. Messages are allowed to cycle stop the machine, but they typical do not. The message

display object is programmed in a location on the global common screen and placed in every

screen, typically separate from fault display such that messages are displayed on every HMI screen.

The display text is stored in the HMI through a multi-state indicator (refer to SD-1020).

Messages should be displayed as long as the associated machine condition exists. The fault reset

button or switch is not required to clear messages. Messages often require operator intervention

with the equipment such that the message is cleared after operator intervention. Without operator

intervention, the message condition may lead to an additional condition which can cause a cycle

stop fault.

Examples: Bowl Feeder Low Level - the message is associated with a need for the operator to add
parts to the bowl feeder. The Bowl Feeder Low Level message (and the logic displaying the
message) will no longer be displayed on the operator interface when the operator re-fills the bowl.
However, ignoring the message may lead to a Cycle Stop fault for No Parts in the feeder track,
which would require the operator to reset the fault display. Messages such as “PLC Battery Low”,
“Coolant Level Low”, “Barrel Heat Zone Not at Temperature”, and “Bowl Feeder Low” are
additional examples.

Machine Status and Part Status:

Machine Status and Part Status conditions have a lower hierarchy for display. There are several

fixed, standard, basic, and status conditions displayed in two dedicated multi-state indicators on

Nexteer’s Automatic HMI screen. The logic enabling these status displays is already programmed

in the logic and HMI templates consistent with the expectations for nearly all machines. The

machine status and part status logic typically do not need to be modified by the OEM.

Operator Prompts:

Operator Prompts (typically referred to as just “prompts”) are part and operator-related conditions

with less significant impact than faults or messages. Prompts are based on operator interaction with

the part being processed. Prompts indicate a condition for operator intervention such that

subsequent nuisance machine faults can be avoided. Prompt conditions are allowed to cycle stop

the machine, but typically do not, although the condition typically does prohibit a cycle from

initiating. Prompts are displayed in a dedicated multistate indicator on the Automatic screen(s).

Prompts should be displayed as long as the condition exists. A reset is not required to clear

prompts; they are cleared after operator intervention. Ignoring the prompt may lead to an additional

condition which can cause a cycle stop fault.

Prompts are application specific. Fully-automatic machines may require no prompts, while

operator-based hand-build assembly stations may require many prompts.

Example Prompt: Use Hand-Tool to Position Snap-Ring. The operator must use the hand-tool to
properly pre-position the snap-ring on the shaft prior to cycle. If the operator attempts to cycle
start the machine without correctly pre-assembling the snap-ring, a machine fault will occur.

Revision Feb 21, 2017 Page 44 of 66

Programmable Logic Controller

Application Specification SD-1032

B. Annex B - Controller: Organizer, Structure, Names, and Instructions

GENERAL

B.1 The Logix Designer PLC file name shall include the asset tag number (SD number) of the

machine(s).

B.2 The logic design shall be created using the Ladder Diagram language type.

a. Sequential Function Chart and Function Block Diagram shall not be used.

b. The use of Structured Text requires Nexteer Controls deviation approval prior to the start of

logic design. Structured Text shall not be used for basic machine control logic that is used for

machine support, such as cycle, sequence, motion and outputs, part quality, and machine

diagnostics. Note: A deviation can and may be granted for Structured Text logic that Nexteer

Controls has determined will not need to be altered by plant support personnel, nor used for

machine support. Two examples where Structured Text can be the appropriate language type

include (1) logic to accomplish sophisticated calculations, or (2) logic provided by the device

manufacturer that is not modified for the application).

B.3 The Master Control Reset (MCR) instruction shall not be used.

B.4 Output Latch instructions shall not be used in motion outputs.

B.5 AOIs may be used when provided by the device manufacturer. AOIs should be programmed in

ladder logic format.

B.6 Rung comments shall be included to clarify the purpose or design intent of complex logic that is not

easily understood. Examples of complex logic can include math operations, data manipulation,

analog signal conversion, and communication to auxiliary devices.

B.7 The controller shall have at least 25% spare (unused) memory.

B.8 Forces or temporary logic used for bypassing logic shall be removed prior to MQ1 runoff of the

equipment. Proper logic operation shall be verified at MQ1.

B.9 Un-used logic, tag names, and descriptions shall be deleted prior to shipment of the machine.

Exception: Descriptions for un-used fault and message array bits should not be deleted.

Clarification: Un-used AOIs and UDTs are allowed to be deleted from the delivered machine logic.

Clarification: The OEM is expected to remove unused Nexteer Library routines. However, when a
library routine (such as an RFID routine, or traceability routine) has been used within the main
program, the OEM is not required to remove un-used portions of logic from that routine.

CONTROLLER ORGANIZER: STRUCTURE AND NAMES

B.10 Nexteer logic files, showing the controller organizer structure and naming conventions as described

within the following sections, are located on www.nexteerdataexchange.com in the Toolkits,

Templates and Forms selection under Vendor Documents.

B.11 The PLC name (the Name field under Controller Properties) shall include the asset tag number (SD

number) of the machine(s) (see Figure 22 below).

B.12 Names shall be consistent between the routine names, I/O configuration devices names, and tag

names, as described within the following sections and as shown in the tables at the end of this

annex.

Revision Feb 21, 2017 Page 45 of 66

Programmable Logic Controller

Application Specification SD-1032

TASKS / PROGRAMS / ROUTINES

B.13 All programs and routines shall be organized under a continuous task named MainTask. (Refer also
to Periodic task deviations listed below).

B.14 For a PLC controlling a single station, all routines shall be organized under a program named

“MainProgram”. The MainProgram should be the only scheduled program under MainTask (see

Figure 22 below).

B.15 For a PLC controlling multiple stations such as an assembly line, the controller organizer structure

should include a general-purpose Main Program and separate programs for each station under the

MainTask. The program for each station should be named as the station number. Each station

program should include routines consistent with the routines required from the Nexteer_Library

MainProgram (as noted elsewhere within this specification). The conveyance control logic should

be included either as routines under the Main program (see Figure 22 below), or as routines under a

program named Conveyor.

PLC Controlling a Single Station PLC Controlling Multiple Stations

Figure 22: Controller Organizer Routines

B.15

B.11

B.14

B.15

B.11

B.13

Revision Feb 21, 2017 Page 46 of 66

Programmable Logic Controller

Application Specification SD-1032

B.16 A deviation can and may be granted allowing periodic task(s) per the following:

a. The MainTask may be configured as a periodic task for a PLC controlling multiple stations

with large amounts of communication traffic.

b. In addition to the continuous MainTask, a periodic task may be configured for a system process

requiring instrumentation inputs to be specifically read at a fixed-rate.

c. For a PLC containing only periodic tasks, the period time configuration shall be adjusted to

maintain processor utilization at or less than 80%.

d. Any periodic task name should include “_XXms”, with XX indicating the Period time

configuration. Note: The default periodic task period time configuration is 10ms.

B.17 For all projects, the name for each routine shall represent the functions or machine tasks that are

accomplished by the logic within the routine.

B.18 The Controller Organizer view shall represent the PLC logic solve-order. Therefore, the routine

names shall include the prefix Rxx. Note: xx represents the logic solving order. Duplicate numbers

are allowed such that related routines are grouped; however duplicate numbers should include an

alpha character suffix such that the controller organizer view represents the PLC logic solve-order.

The routines shall be called by logic within the routine Main in this numerical order.

B.19 Additional routines are available for use as determined by the machine application, such as routines

provided in the Library_Routines program of the Nexteer_Library. Logic from the library, when

used, shall be moved, copied, or imported into the MainProgram or station programs. Routines shall

be unconditionally called from the MainProgram or station programs; the routines shall not be run

from the Library_Routines program.

Note: Nexteer Library routines with a routine name appended with the text “_TOOLS” contain
specific rungs of logic that are intended to be copied or rung-imported into existing MainProgram
or station program routines of the same name.

B.20 Additional routines are allowed for applications not illustrated in the logic templates. Additional

routines should follow the requirements and naming conventions of this specification.

Revision Feb 21, 2017 Page 47 of 66

Programmable Logic Controller

Application Specification SD-1032

I/O CONFIGURATION – SINGLE STATION

B.21 Connection Request Packet Interval (RPI)

settings on all devices shall be a minimum of 20ms,

and should not exceed 100ms. Note: RPI default is
20ms.

B.22 Unicast Connection over EtherNet/IP shall be

enabled in all device connection configurations (for

devices that include this setting). Note: Unicast is
enabled by default.

B.23 Devices in the I/O Configuration shall be named

using a combination of the device type, device model,

device ID, application use, and a numerical reference

consistent with the I/O and device tags (see Figure 23).

B.24 Each device shall have a unique name.

B.25 The device names should be a maximum of 20

characters in length. It is recommended that upper case

characters be used to start each word in the name.

B.26 Local I/O: The module name shall be the same

as the I/O tag that is mapped to/from the module data.

(Refer the Main routine specification section above).

B.27 Distributed I/O (when used): For Point I/O the

AENT Ethernet Adapter name shall be a character D

for distributed device plus a numerical value (starting

at 1). Note: The number may be omitted on small
systems which contain only one AENT module.

B.28 Distributed I/O (when used): Each I/O module

name shall be the same as the I/O tag that is mapped

to/from the module data. (Refer the Main routine

specification section above). Note: This module name
requirement applies to Point I/O modules as well as
on-machine input modules such as Armor Blocks.

Note: The tables at the end of this annex show
examples with clarification notes.

Figure 23: Controller Organization –

I/O Configuration for Single Station

B.26

B.28

B.23

Revision Feb 21, 2017 Page 48 of 66

Programmable Logic Controller

Application Specification SD-1032

I/O CONFIGURATION -

MULTISTATION

B.29 Devices in the I/O

Configuration shall be named and

configured per the I/O Configuration –

Single Station section above, plus the

following additional requirements for

multiple station equipment (see Figure 24).

B.30 The unique configuration names

for each networked device should include

the station number in the configuration

name. The name for a device that is

associated with multiple stations may

include the station number closest to the

device, or the name may include all station

numbers associated with the device. The

name for a device associated with the main

enclosure or main conveyor may include

the terms Main or Conv.

Note: The tables at the end of this annex
shows examples with clarification notes.

Note: The configuration name for a device
associated with multiple stations may
include an “ST” and a station number, or
a “D” and a station number.

Figure 24: Controller Organization – I/O

Configuration for Multiple Station

B.27 & B.30

B.28 & B.30

Revision Feb 21, 2017 Page 49 of 66

Programmable Logic Controller

Application Specification SD-1032

LOGIX DESIGNER 5000 TAGS

TAG CONFIGURATION

B.31 All tags shall be defined as Controller scope. Exceptions: Program scope tags are allowed when a

single PLC controls multiple stations.

B.32 Boolean (BOOL) arrays should not be used. Exceptions: Boolean arrays are required for functions

detailed in existing Nexteer_Library routines such as Messages.

TAG NAMING

B.33 This section establishes a hierarchy for tag naming; the tables at the end of this annex show

examples with clarification notes.

B.34 I/O tag names shall start with the character I or O for input or output respectively, then be built as

follows:

a. for distributed I/O only (such as Point I/O and distributed on-machine blocks) followed by

additional text.

i. D and a unique device number, or ST and a station number for the associated station, or B

and a unique block number, or BNI and a unique Balluff BNI module number.

ii. followed by an underscore character.

b. followed by the slot number (does not apply to distributed on-machine blocks).

c. for analog I/O only: followed by the text CH and the signal channel number.

Note: The additional text required on distributed I/O may be a combination of one or more device,
block, and station identification alpha-numeric characters. For the additional text required on
distributed I/O, the number may be omitted on small systems which contain only one distributed I/O
device, block, or module.

Note: Per SD-004, I/O conductors shall have the same identification as the I/O, including cables
for analog signals.

B.35 Non I/O tags with contents modified (set or enabled) within a routine shall be named based on the

routine name, an underscore, and the tag function (purpose or use within the routine). Note: The
templates establish the required routine-name portion of the tag names that are associated with the
required routines. An abbreviation of the routine name may be used for tags associated with
routines and devices not specifically shown in the templates.

B.36 Non I/O tags with contents modified by a device shall be named based on the device name, an

underscore, and the tag function (purpose or use from the device).

B.37 Maximum overall tag name length should be 30 characters. It is recommended that upper case

characters be used to start each word in the name. The use of abbreviations should be minimized.

Revision Feb 21, 2017 Page 50 of 66

Programmable Logic Controller

Application Specification SD-1032

USER-DEFINED DATA TYPES (UDTs)

B.38 This section describes both the application of Nexteer-

provided UDTs, and establishes requirements for

OEM-created UDTs.

B.39 Nexteer-provided UDTs have a property name

prefixed with either a “u_” or an “x_” (see Figure 25).

a. UDTs that have a u_ prefix typically require

modification to match the application.

b. UDTs that have an x_ prefix shall not be modified.

B.40 Tag names shall follow a similar convention to the

non-I/O tag-naming section covered previously in this

specification. Note: Tags created by UDT usage will
have a format: Tag_Name.Device_Member.

a. The Tag_Name shall be a unique name for each

use of the UDT, using the following naming

hierarchy:

b. Tags with contents modified (set or enabled)

within a routine shall be named based on the

routine name. Example UDT usage tag name:

Out_CloseClamp, with a complete tag and

member name Out_CloseClamp.Enable. Example

UDT usage tag name: CodeReaderHsg, with a

complete tag and member name

CodeReaderHsg.CommActive.

c. Tags with contents modified by a non-PLC device

shall be named based on the device name.

Example UDT usage tag name: FANUC_DataIn,

with a complete tag and member name

FANUC_DataIn.TPENBL.

Note: Tag names are required to include a prefix
based on the routine in which the tag’s contents are
modified. It therefore follows that, in order for an
OEM-created UDT to be acceptable, each use of the
UDT shall have all member-modifying instructions,
such as OTEs and timers, set in one routine.

B.41 The Device_Member names shall be based on the

member’s control function (purpose or use).

B.42 All tags shall have detailed description consistent with

the Tag Descriptions section of this specification.

Figure 25: Library UDTs

B.39.a

B.39.b

B.46

Revision Feb 21, 2017 Page 51 of 66

Programmable Logic Controller

Application Specification SD-1032

B.43 The use of additional, OEM-created UDTs, requires Nexteer Controls deviation approval prior to

the start of logic design.

a. OEM-created UDTs shall not be created for logic routines used for sequence, part quality, and

machine diagnostics (faults and messages).

b. OEM-created UDTs should not be created for logic routines used for mode and cycle.

c. OEM-created UDTs shall have a property name prefixed with the characters oem_name.

B.44 OEM-created UDTs, and OEM modification to Nexteer UDTs should keep UDT members grouped

by data type.

B.45 OEM-created UDTs, and OEM modification to Nexteer UDTs shall include detailed descriptions

for all UDT members consistent with the Tag Descriptions section of this specification.

Note: Tag member descriptions will be appended to the base tag description using the pass-through
display feature under the controller properties project tab. Refer to tag description examples shown
in the Tag Descriptions section at the end of this annex.

B.46 UDTs are also allowed when device-created by third-party device applications (such as by use of

AOIs or AOPs). The device-created property name for these device-created UDTs should not be

altered.

Revision Feb 21, 2017 Page 52 of 66

Programmable Logic Controller

Application Specification SD-1032

I/O CONFIGURATION, ROUTINE, AND TAG NAMING TABLES

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O

Configuration
Tag Name Examples Device Explanation and Clarification Notes

I1 I1 Local Discrete Input Card

Slot 1

I/O configuration name is consistent with the I/O device tag(s).

I1 I1.2 Local Discrete Input Card

Slot 1, Bit 2

O4 Local Discrete Output Card

 Slot 4

I/O configuration name is consistent with the I/O device tag(s).

O4 O4.7 Local Discrete Output Card

Slot 4, Bit 7

Most outputs will be energized within the OutputMotions routine; however,

discrete outputs are NOT named by their associated routine. Naming by I/O takes

priority.

I3 I3Ch1 Local Analog Input Card

Slot 3, Channel 1

Although an analog input will be associated with the Analog routine, naming by I/O

takes priority. This signal’s cable number should be I3CH1.

B2 IB2.8 AB Distributed Input Block

Block 2, Bit 8

I/O configuration name is consistent with the I/O device tag(s).

ST70_B1 IST70_B1.7 AB Distributed Input Block

Station 70, Block 1, Bit 7

I/O configuration name is consistent with the I/O device tag(s). This input device’s

wire number should be “ST70_IBK01.7”.

Table 1: I/O Tag Consistency – Local and Distributed I/O

Revision Feb 21, 2017 Page 53 of 66

Programmable Logic Controller

Application Specification SD-1032

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O

Configuration
Tag Name Examples Device Explanation and Clarification Notes

D1 Distributed Point I/O

AENT Module 1

Point I/O AENT Module number 1 either within a single station, or in the main

enclosure of a multi-station machine.

ID1_4 ID1_4.1 Point I/O Input Card

Module 1, Slot 4, Bit 1

I/O configuration name is consistent with the I/O device tag(s).

ST20 Distributed Point I/O

AENT Module ST20

Point I/O AENT Module associated with Station Number 20.

IST20_1 IST20_1.5 Point I/O Input Card

Module ST20, Slot 1, Bit 5

Station 20 (only) inputs.

ST20_30 Distributed Point I/O

AENT Module ST20 & ST30

Point I/O AENT Module associated with Station Numbers 20 and 30, the I/O

Configuration name can include all Stations.

IST20_1 IST20_1.5 Point I/O Input Card

Module ST20, Slot 1, Bit 5

Station 20 (only) inputs. The I/O Configuration name for the card is allowed to be

just the Station Number associated with the card when the Station Number is also

part of the AENT Module configuration name.

IST30_3 IST30_3.5 Point I/O Input Card

Module ST30, Slot 3, Bit 5

Station 30 (only) inputs. The I/O Configuration name for the card is allowed to be

just the Station Number associated with the card when the Station Number is also

part of the AENT Module configuration name.

BNI2 IBNI2.4 Balluff BNI Module

Module 2, Input 4

I/O configuration name is consistent with the I/O device tag(s).

Table 2: I/O Tag Consistency – Distributed I/O

Revision Feb 21, 2017 Page 54 of 66

Programmable Logic Controller

Application Specification SD-1032

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O

Configuration
Tag Name Examples Device Explanation and Clarification Notes

DM302 CodeReaderRack_DM302CommActive Cognex Dataman 300 Series

Code Reader

Cognex Dataman Module 302, associated with reading the rack code,

communication active OTE instruction programmed in the CodeReader_Rack

routine.

DM1155 CodeReaderRack_DM1155CommActive Cognex Dataman 300 Series

Code Reader

An example of a Cognex Dataman Model 302 that has a device number 1155

(appears on Sheet 11, Line 55), tag names based on device number are

allowed when used consistently throughout the project.

DM302_Pinion CodeReaderPinion_DM302Status Cognex Dataman 300 Series

Code Reader

Cognex Dataman Model 302, associated with reading the pinion code,

additional naming required if multiple code readers exist on the machine.

DM302_Sleeve CodeReaderSleeve_DM302Status Cognex Dataman 300 Series

Code Reader

Cognex Dataman Model 302, associated with reading the sleeve code,

additional naming required if multiple code readers exist on a machine.

Table 3: I/O Tag Consistency – Code Reader

Revision Feb 21, 2017 Page 55 of 66

Programmable Logic Controller

Application Specification SD-1032

Naming – Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

R00_Main Main_NoEstops The OTE instruction programmed in the Main routine indicating that no

emergency stop conditions exist.

R01_Mode Mode_AutoMode Automatic Mode Selected OTE instruction programmed in the Mode

routine.

R03_Cycle Cycle_MIC Machine In Cycle (MIC) OTE instruction programmed in the Cycle routine.

R05_Sequence Seq_Step025PartQualityCheck1 The OTE instruction programmed in the Sequence routine that initiates the

first quality check, at step number 25 of the sequence.

R07_OutputMotions Out_ClearToRetractPress The OTE instruction programmed in the OutputMotions routine that

indicates the conditions are clear to retract the press.

R07_OutputMotions HMI_CloseClamp HMI A tag used in the R07_OtuputMotions routine, but set by the HMI,

indicating a command from the HMI to close the clamp.

R08_Fault_Control Fault_NoCycleStops The OTE instruction programmed in the Fault_Control routine that

indicates there are no cycle stop conditions. Note that there are multiple

routines with tag names called “Fault_.”

R08_Fault_CycleStop Fault_PartPresentBackcheck The OTE instruction programmed in the Fault_CycleStop routine that

maintains memory of the Part Present switch being OFF. Note that there

are multiple routines with tag names called “Fault_.”

R08_Fault_ImmedStop Fault_ImmedStop[0].1 Immediate Stop fault number 2; the OTE instruction programmed in the

Fault_ImmedStop routine. The tag’s description indicates the fault display

text. Note that there are multiple routines with ta names called “Faults_.”

Table 4: Routine and Tag Name Consistencies (Set 1)

Revision Feb 21, 2017 Page 56 of 66

Programmable Logic Controller

Application Specification SD-1032

Naming – Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of

the UDT named UDT_BNI_Master_Faults_v2. In this example, the system

has only one master BNI and therefore the UDT predecessor name

(BNI_Faults) indicates no device number. The tag description for

Port2_Connection includes the text “I/O Link Port #2 (physically port #3)

Device Not Connected – Check Cable.”

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of

the UDT named UDT_BNI_Master_Faults_v2. In this example, the system

has only one master BNI and therefore the UDT predecessor name

(BNI_Faults) indicates no device number. The tag description for

Port2_Connection includes the text “I/O Link Port #2 (physically port #3)

Device Not Connected – Check Cable.”

R91_HyperCyl Out_HypercylPowerTimer.DN The done bit for the HyperCyl Power Stroke Raise / Lower Motion Fault

Timer. The done bit is used in the Fault routine, however, the ta name

includes the routine name “Out” since the timer is to be moved from the

R91_HyperCyl routine and programmed in the OutputMotions routine.

R91_HyperCyl Fault_ImmedStop[3].11 Immediate Stop fault number 108, HyperCyl Approach Motion Overtime,

included in the library routine R91_HyperCyl, however, the logic is to be

moved to the Fault_ImmedStop routine. The tag’s description is to be

consistent with the fault display text. Note that there are multiple

routines with the tag names called “Fault_”.

Table 5: Routine and Tag Name Consistencies (Set 2)

Revision Feb 21, 2017 Page 57 of 66

Programmable Logic Controller

Application Specification SD-1032

TAG DESCRIPTIONS

B.47 All tags shall have detailed descriptions. The descriptions shall not be a copy of the tag name. The

descriptions should use full English words. To clarify: Descriptions should include more detail than

the tag name. The purpose of the description is to provide additional information to clarify tag

names that, due to length constraint, are not easily understood. Therefore abbreviations should also

be avoided.

B.48 The descriptions should be 5 lines or less with a maximum of 20 characters for each line.

B.49 The descriptions for all I/O tags shall be consistent with the wording on the hardware drawings.

Documentation for any unused I/O tags shall be deleted or noted as spare prior to shipment of the

equipment.

B.50 Example descriptions that provide clarification detail are listed below.

Tag Name Description

Axis1_AutoAllowMoveRetPos Axis-1 Auto Allow Move to Return Position

Analog_ToolingPosition Tooling Position Scaled Value (inches)

Quality_RejectRemoved Reject Part Removed from Nest

Out_AdvancePunch

(u_Motion tag)
Advance the Hydraulic Notch Punch

.Enable

(u_Motion member)
Conditions to Enable Motion

Out_AdvancePunch.Enable Advance the Hydraulic Notch Punch Conditions to Enable Motion

Table 6: Tag Description Examples

Revision Feb 21, 2017 Page 58 of 66

Programmable Logic Controller

Application Specification SD-1032

C. Annex C – Complex or Special Sequence Considerations

C.1 General

Nexteer’s logic philosophies and requirements for basic machine sequence are detailed above

within the Sequence routine section of this specification.

The purpose of this annex is to explain how to incorporate several complex, special, or customized

sequences into the Nexteer format and philosophy. For all applications, the design of the sequence

logic needs to provide the Nexteer plant personnel with a quick understanding of how the machine

processes the part.

Four variants of sequences are detailed in this annex:

• Variance in step-order, such as different sequences based on model selection

• Multiple simultaneous sequences, such as processes occurring at the same time within

an over-all machine sequence

• Machine that repeats processes

• Use of the Sequence routine for machines specifically designed for hand-assembly of

parts

The routines related to special sequence applications typically include the Main and Sequence

routines.

Requirements:

Simple variance in machine sequence can be accomplished within one sequence routine. However,

for more complex sequences as described within this annex, multiple sequence routines may be

programmed.

Simple machine example: When running Model L and W it is required that two screws be tightened
in the order of screw 1 then 2, but for Model R these two screws are to be tightened in the order of
screw 2 then 1. This simple sequence variance may be accomplished with just a few logic contacts
within the one sequence routine.

The Main routine requirements section of this specification states that the Main routine shall

include logic that unconditionally calls (jumps to) all other routines. The routines shall be called in

the same rung-order as is visible in the controller organizer.

Revision Feb 21, 2017 Page 59 of 66

Programmable Logic Controller

Application Specification SD-1032

C.3 Variance in step-order:

For more complicated sequences, multiple sequence

routines may be programmed.

Machine example, the Cover Screw station on a Solder
Line: The station requires a differing number of screws for
each model cover, as well as a differing screw order. In this
example the station steps through its main sequence, and
then proceeds to the correct Model L, W, or R screw
sequence before returning to the main sequence routine to
complete the cycle.

When multiple sequence routines are programmed for a

single station, each sequence routine may include a

Reset_Sequence output-energize instruction.

Note: In this example Reset_Sequence output-energize
instruction from the Sequence_Main routine resets the steps
from all routines.

C.4 Multiple simultaneous sequences:

Use of multiple sequences is a convenient programming

method when multiple processes need to occur at the same

time, such as when multiple stations on a dial table all

process their respective part at the same time.

In the controller organizer shown in Figure C.4 to the left,
the dial table index sequence is controlled by the TurnTable
sequence. After index, the load and unload station sequence
is controlled by the Load_Unload routine, while
simultaneously the test station sequence is controlled by the
combined Test routine.

Multiple sequences may be programmed on an individual station when multiple processes need to

occur at the same time.

When multiple sequence routines are programmed for a single station, each sequence routine may

include a Reset_Sequence output-energize instruction.

Note: In this example a separate Reset_Sequence output-energize instruction for each
routine should be programmed to reset just that routine’s steps from all routines.

Figure C.3: Multiple Model-

Dependent Sequence Routines

Figure C.4: Multiple Simultaneous

Sequence Routines

Revision Feb 21, 2017 Page 60 of 66

Programmable Logic Controller

Application Specification SD-1032

C.5 Repeat process steps:

Use of multiple sequence routines is also a convenient

programming method when a part process needs to repeat a

major portion of the machine sequence.

Typically, a station will step through the normal sequence

of advancing motions, but when a process needs to be

repeated, the logic should proceed to a separate sequence

routine that includes both steps to retract motions and steps

that then re-advance motions until reaching the position to

repeat a process (reaching the steps to be repeated in the

normal sequence routine).

Example: In the controller organizer shown in Figure C.5
to the left, the test station’s typical sequence (Test) engages
the part and steps through the test process. After the test, if
the part is allowed to be re-tested, the logic proceeds to the
ReTest sequence which retracts the engage motion and
resets the Test sequence such that the normal Test sequence

is re-run. The Test sequence would again engage and test.

Note: In this example Reset_TestSequence output-energize instruction has been programmed in the
SequenceC_Test routine to reset all steps in both the SequenceC_Test and SequenceD_ReTest
routines, which includes resetting the sequence when the ReTest sequence has retracted the engage
motion.

C.6 Hand-Assembly of parts:

From the Sequence routine section of this specification (item 2.5.9):

Operator tasks that are required to occur in a specific sequence shall be programmed within a

sequence routine.

The assembly sequence shall follow the correct assembly order. Note: Nexteer’s manufacturing
engineer purchasing the equipment details the required assembly sequence.

All associated sensors and error-proofing shall be monitored during the entire process step(s).

Implementation examples:

In the first example (shown on the following page Figure 26) refer to the Atlas Copco Torque

Wrench sequence starting after step[25], rung 18, note that during the Atlas Copco Torque Wrench

sequence the L/RHD & L/AWD Part Support and the W/RHD Part Support both must remain in

the lowered (not raised) position during the entire torque process, until the torque passes in rung 20

and step[37] seals-in.

In the second example from the same machine (shown on the following page Figure 27), rung 27

through 29, the complete Left Side Oetiker Clamp sequence will reset if the Lift is raised (not

lowered), per the logic initiated by IN1_2.3 in rung 27.

Figure C.5: Multiple Sequence

Routines – Repeat Sequence

Revision Feb 21, 2017 Page 61 of 66

Programmable Logic Controller

Application Specification SD-1032

Figure 26: Torque Process Example (Support must remain lowered)

Figure 27: Oetiker Clamp Process Example (Lift must remain lowered)

Revision Feb 21, 2017 Page 62 of 66

Programmable Logic Controller

Application Specification SD-1032

D. Annex D - Cycle Pause - Pausing a Cycle

D.1 General

Pausing a cycle is not typical for Nexteer’s production processes. Typically it is not appropriate to

pause a cycle (and then restart the cycle). Therefore most machines should not include a Cycle

Pause feature because of the complex logic that would be needed to ensure part quality and proper

machine sequence. The logic would be complex when taking into account every possible incorrect

or inadvertent machine or operator action that could occur while the machine is paused.

Logic that includes the ability to pause and then restart a cycle adds a level of complication to the

Nexteer logic philosophies and formats established within this specification. Even so, the purpose

of this Cycle Pause annex is to explain how to incorporate an operator initiated Cycle Pause

(through an HMI pushbutton Cycle Pause) feature into the Nexteer format and philosophy, since

the ability to pause a cycle is occasionally allowed for specific applications.

D.2 Requirements

A Pause Cycle momentary push button shall be included on the HMI Automatic screen.

Example logic for a Cycle Pause feature is available within the Cycle_TOOLS and

OutputMotion_Tools routines of the Nexteer Library_Routines program. The Cycle routine will

require additional rungs to break the Machine In Cycle, provide a pause request pulse, specify

conditions that will allow a cycle to remain paused, and seal-in the paused state. The Immediate

Stop fault routine will include a Maximum Paused Time fault if the cycle has been paused for more

than two minutes.

D.3 Application Specific

Logic shall be included in the OutputMotions routine as revisions to the Auto Allow rung for each

motion. Typically a contact from the motion’s collision avoidance output-energize instruction (a),

and a contact indicating that the previous machine sequence motion has been completed (b), are

required. The first motion of the sequence does not require these contacts.

Figure 28: Auto Allow Collision Avoidance for Cycle Pause

Revision Feb 21, 2017 Page 63 of 66

Programmable Logic Controller

Application Specification SD-1032

The application specific detail that cannot be shown in an example includes the complex logic

required to ensure part quality and proper machine sequence. The most complex logic that shall be

considered addresses these two questions for each and every motion and process:

• Will the part process occur correctly if any motion that has already fully advanced be hand-

forced out of position while paused, and then be re-advanced by restarting a paused cycle?

• Will the part process occur correctly if any motion that has already fully advanced simply be de-

pressurized (such as via interruption of a light curtain) while paused, and then be re-pressurized

by restarting a paused cycle?

Revision Feb 21, 2017 Page 64 of 66

Programmable Logic Controller

Application Specification SD-1032

E. Annex E - Glossary

E.1 Abort Cycle: An operator-initiated

command to immediately stop the current

machine cycle.

E.2 Auto allow: A Nexteer phrase referring to

the one output-energize instruction that

provides a common method of interfacing

the auto mode sequence logic into the

standard solenoid output control rung of

logic. One Auto Allow output-energize

instruction is provided per direction of

motion; and one contact is used from this

output-energize instruction. Auto Allow is

enabled by commands from the sequence

logic.

E.3 Back Check: Back check, back checked,

or back checking, are terms or phrases that

originated from logic that “checked” that

an input was OFF (or went “back” to OFF

after a cycle) such that the input would

then be ensured to transition to ON during

the cycle in order classify a part as a Good

Part. Nexteer’s use of the term has

evolved to be associated with any and all

logic that ensures the function of inputs

and input devices (including discrete,

analog, and communication-based).

E.4 Collision avoidance: A Nexteer phrase

related to logic included to prevent

damage to the tooling or part; logic that

“avoids” a damaging “collision.” Similar

terms include clear to move, motion

interlocks, and motion constraints.

E.5 Control Function in the Event of Failure:

A term referenced from international

machine standards such as IEC 60204-1.

The term refers to how the machine

control system is designed to detect, react,

and function when a failure occurs.

E.6 Debounce (sensor debounce): Bounce is a

common industry term for the tendency of

a contact in devices to generate multiple

signals as the contact closes or opens,

including potential multiple signals from

the bounce of machine mechanics;

“debounce” is any logic that ensures that

only a single signal will be acted upon for

a single opening or closing of a contact.

E.7 Error proofing: An automatic device or

method that either makes it impossible for

an error to occur or makes the error

immediately obvious once it has occurred.

E.8 MIC: A Nexteer acronym used for the

term Machine In Cycle.

E.9 OEM: An acronym used for the Original

Equipment Manufacturer; another term

used for the machine builder.

E.10 PSDI: An acronym for Presence Sensing

Device Initiation, referenced from

international machine standards such as

ANSI. PSDI is the machine control

function for starting a machine cycle

based upon the loss of a signal from a

presence-sensing safety device (or the

absence of an operator within the safety

device presence-sensing envelope, safely

clear of the hazardous area).

E.11 Reset All Memories: The control function

and output-energize instruction that resets

memories affecting, storing, or otherwise

relating to part status and part quality.

E.12 Seal-in logic: A common phrase in ladder

logic referring to parallel contacts that

keep an output-energize instruction in the

ON state (“seal-in” the output). Although

similar to the function of an output-latch

instruction, Nexteer typical requires an

output-energize instruction with parallel

contacts seal-in such that all of the logic

controlling the state of the output can be

viewed within one rung of logic.

E.13 Template: The Nexteer HMI and PLC

logic files provided as examples of both

(1) basic format, and (2) methods of

compliance to Nexteer specifications.

E.14 Unconditionally called: Logic that powers

the output command directly from the left-

hand power rail such that the command is

executed each logic scan.

Revision Feb 21, 2017 Page 65 of 66

Programmable Logic Controller

Application Specification SD-1032

F. Annex F - References

F.1 IEC 60204-1: Electrical Equipment of

Machinery – Part 1: General

Requirements

F.2 SD-000: Nexteer Automotive Machinery

and Equipment Specification

F.3 SD-004: Nexteer Automotive Electrical

Specification for Industrial Machinery

Addendum to IEC 60204-1

F.4 SD-007: Nexteer Automotive Approved

Components List

F.5 SD-010: Nexteer Automotive Standard

Equipment Specification

F.6 SD-011: Nexteer Automotive

Specification for Safety Circuits

F.7 SD-1020: Nexteer Automotive Human

Machine Interface Application

Specification

F.8 SD-1033: Nexteer Automotive RFID

Application Specification

F.9 SD-1034: Nexteer Automotive Machine

Control Traceability Interface

F.10 PLC_HMI_Template_Files_rev_date.zip:

Nexteer Automotive Logix Designer and

FactoryTalk View Studio files

NOTE: To obtain a copy of Nexteer
Automotive specifications and templates
visit our vendor document web-site
currently at
www.nexteerdataexchange.com . Copies
of any other referenced specification can
be purchased, typically from the
originating organization or at various
industry specification web-sites.

Revision Feb 21, 2017 Page 66 of 66

Programmable Logic Controller

Application Specification SD-1032

RECORD OF REVISIONS

Revision # Date Section Description

001 06NO09 All Original Approval & Issue Date.

002 18DE13 3.9
Added PSDI applications section; renumbered all

subsequent sections.

003
Feb 21,

2017
All Document Restructured and Rewritten

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

