
Programmable Logic Controller
Application Specification

Global Common

SD-1032

ISSUED July 01, 2007
REVISED January 9, 2025

© 2024 Nexteer Automotive

All rights reserved.

Revision 09JA25 Page 2 of 76

Programmable Logic Controller
Application Specification SD-1032

This page intentionally blank.

Revision 09JA25 Page 3 of 76

Programmable Logic Controller
Application Specification SD-1032

Table of Contents

1. Scope and Purpose.. 8

1.1 Scope ... 8

1.2 Purpose and Objective ... 8

1.3 Critical Principle - Control Functions in the Event of Failure.. 9

2. Standard Logic Requirements (associated routine name) .. 10

2.1 Main Program Control (R00_Main routine) .. 10

2.2 Mode Selection (R01_Mode Routine) ... 11

2.3 Model Selection (R02_Model Routine) ... 11

2.4 Precondition and Initiate Machine Cycle (R03_Cycle Routine) ... 12

2.5 Signal Conditioning (R04_Analog Routine) .. 16

2.6 Machine Sequence (R05_Sequence Routine) .. 16

2.7 Part Quality Logic (R06_Quality Routine) .. 19

2.8 Solenoid Control (R07_OutputMotions Routine) ... 21

2.9 Machine Diagnostics – Display Control (multiple routines) ... 26

2.10 Machine Diagnostics – Conditions and Detection logic ... 27

2.11 Standard (Main Task) Routines Required On All Machines .. 29

3. Safety Logic Requirements (associated routine name) ... 31

3.1 Safety Program Control (R00_Main routine).. 31

3.2 Emergency Stop (R01_EmergencyStop Routine).. 32

3.3 Safety Gate Interlocks (R02_SafetyGate Routine).. 34

3.4 Light Curtain PSD (R03_LightCurtain Routine) .. 36

3.5 Area Scanner PSD (R04_AreaScanner Routine) .. 37

3.6 Two-Hand Control (R05_TwoHandControl Routine) .. 39

3.7 Safety Outputs (R10_SafeOutputs Routine) ... 41

3.8 Additional Safety Routines .. 43

3.9 Safety (SafetyTask) Routines Required On All Machines .. 44

4. Required Logic Design - Application Specific ... 45

4.1 Light Curtain Interruption ... 45

4.2 Motor Starter Control ... 46

4.3 Shift Register / Indexing Logic .. 47

4.4 Pallet Release / Pallet Memory .. 47

4.5 Indicator Lights .. 47

Revision 09JA25 Page 4 of 76

Programmable Logic Controller
Application Specification SD-1032

4.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIs) ... 48

4.7 HMI Requirements for Safety Controller Applications .. 48

A. Annex A - Machine Diagnostics Scheme and Hierarchy .. 49

B. Annex B - Controller: Properties, Organizer, Structure, Names, and Instructions .. 51

C. Annex C – Complex or Special Sequence Considerations .. 68

D. Annex D - Cycle Pause - Pausing a Cycle .. 72

E. Annex E - Glossary ... 74

F. Annex F - References .. 75

Revision 09JA25 Page 5 of 76

Programmable Logic Controller
Application Specification SD-1032

List of Figures
Figure 1: Deterministic Update of Inputs ... 10

Figure 2: Reset All Memories Examples ... 14

Figure 3: Reset String Memory Example .. 14

Figure 4: Reset All Memories Logic Rung .. 15

Figure 5: Sequence Structure - Preferred – Two Machine Tasks / Two Rungs ... 17

Figure 6: Sequence Structure – Allowed – Two Machine Tasks / Two Instructions .. 17

Figure 7: Sequence Structure – NOT ALLOWED – Two Machine Tasks / One Instruction ... 17

Figure 8: Reset Sequence Logic .. 18

Figure 9: Examples of Minimum Collision Avoidance Logic... 22

Figure 10: Example Use of Collision Avoidance Logic ... 22

Figure 11: Example Auto Allow Logic (Motion Towards the Work Position) .. 23

Figure 12: Example Auto Allow Logic (Motion Toward Home Position) .. 23

Figure 13: Example Solenoid Control Rung .. 23

Figure 14: Remove Solenoid Power... 24

Figure 15: Example Single Solenoid Motion Valve Logic .. 25

Figure 16: Example Motor Starter (Start/Stop) Logic .. 26

Figure 17: Example Sequence-Controlled Motor Starter Logic .. 26

Figure 18: Nexteer_Library Controller Organizer ... 29

Figure 19: Multiple Station Controller Organizer Views .. 30

Figure 20: Mapping of Safety Inputs ... 31

Figure 21: Safety Reset Signal – Falling Edge ... 32

Figure 22: Safety Module Status .. 32

Figure 23: Emergency Stop Input Status and DCS Instruction .. 33

Figure 24: Emergency Stop Status... 34

Figure 25: Safety Gate Input Status and DCS Instruction ... 35

Figure 26: Safety Gate Status ... 36

Figure 27: Light Curtain Input Point Status and DCS Instruction .. 36

Figure 28: Light Curtain Status.. 37

Figure 29: Area Scanner Input Point Status and DCS Instruction .. 38

Figure 30: Area Scanner Status ... 39

Figure 31: Two-Hand Control Device Input Point Status and THRSe Instruction.. 40

Figure 32: Two-Hand Control Status ... 41

Figure 33: Safety Output and Feedback Input Point Status .. 41

Figure 34: Safety Output CROUT Instruction ... 42

Revision 09JA25 Page 6 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 35: Safe Output Control.. 42

Figure 36: Delayed Off Safe Output Control ... 43

Figure 37: Nexteer_Library Controller Organizer ... 44

Figure 38: Multiple Station Controller Organizer Views .. 44

Figure 39: Light Curtain Interruption ... 45

Figure 40: Example Motor Starter Logic ... 46

Figure 41: Controller Organizer Routines #1 .. 53

Figure 42: Controller Organizer Routines #2 .. 54

Figure 43: Controller Organization – I/O Configuration for Single Station .. 55

Figure 44: Safety Input and Output RPI and CRTL .. 56

Figure 45: Safety System Reaction Time .. 56

Figure 46: Safety Input Point Operation Type.. 57

Figure 47: Safety Output Point Operation Type ... 57

Figure 48: Safety Tag Mapping .. 57

Figure 49: Controller Organization – I/O Configuration for Multiple Station ... 58

Figure 50: Library UDTs .. 60

Figure 51: Torque Process Example (Support must remain lowered) ... 71

Figure 52: Oetiker Clamp Process Example (Lift must remain lowered).. 71

Figure 53: Auto Allow Collision Avoidance for Cycle Pause .. 72

Revision 09JA25 Page 7 of 76

Programmable Logic Controller
Application Specification SD-1032

List of Tables
Table 1: I/O Tag Consistency – Local and Distributed I/O ... 62

Table 2: I/O Tag Consistency – Distributed I/O .. 63

Table 3: I/O Tag Consistency – Device Names and Tags ... 64

Table 4: Routine and Tag Name Consistencies (Set 1) .. 65

Table 5: Routine and Tag Name Consistencies (Set 2) .. 66

Table 6: Tag Description Examples .. 67

Revision 09JA25 Page 8 of 76

Programmable Logic Controller
Application Specification SD-1032

1. Scope and Purpose

1.1 Scope

1.1.1 This specification describes programmable logic controller (PLC) logic design functional requirements and
format for Nexteer Automotive facilities. This specification shall be used by the Original Equipment
Manufacturers (OEM) in their design of PLC systems.

1.1.2 This specification applies to the purchase of new equipment and control system rebuilds. It should not be
implied that any existing equipment is required to be retrofitted to comply with this specification.

1.1.3 This specification references four associated PLC logic files: Nexteer_Library, SingleStation, MultiStation,
and DialTable. These Nexteer logic files (collectively referred to as logic library) reflect the requirements of
this specification (Nexteer Library); they provide additional logic routines for specific applications (Nexteer
Library); and they provide examples for applying the Nexteer routines and specifications to three typical
types of machines (SingleStation, MultiStation, and DialTable). The PLC logic files are available at
www.nexteerdataexchange.com.

Note: The Nexteer logic files contain SafetyTask programs and routines intended for use on safety
controller applications. If a standard controller is used, the SafetyTask will not exist, and the safety routines
will not apply to that application.

1.1.4 Additional applications specific guidelines that include PLC logic-related topics (such as HMI operator
interface, RFID, or traceability) are also available at www.nexteerdataexchange.com.

1.1.5 The use of the word “shall” indicates requirements and the use of the word “should” indicates
recommendations. The use of the word “may” indicates permission or allowance and the use of the word
“can” indicates a possibility.

1.1.6 This specification is structured as follows.

1. Standard logic requirements and guidance are detailed within Section 2.

2. Safety logic requirements and guidance are detailed within Section 3.

3. Additional application specific requirements are detailed in Section 4.

4. Nexteer’s machine diagnostic philosophy, scheme, and hierarchy are described in Annex A. An
understanding first of Annex A’s philosophies will aid in understanding the machine diagnostics
requirements of Section 2.

5. The controller and I/O module properties, logic structure and organization are summarized in Annex B.

1.2 Purpose and Objective

1.2.1 The purpose of this specification is to provide Nexteer requirements and guidance to Original Equipment
Manufacturers (OEM) for use in their design of PLC logic.

1.2.2 The objective of this specification is to provide common, maintainable, and cost-effective controls systems
that enhance both the productivity and ease-of-use of the systems, plus ensure the quality of Nexteer
products produced. The application of this specification will result in common controls systems software
that:

1. ensures the machine processes the part correctly. To correctly process the part, the machine logic design
needs to include significant consideration for the control functions in the event of failure such that the
machine is not capable of processing the part incorrectly. Aspects of control functions in the event of
failure are discussed in detail throughout this specification.

Revision 09JA25 Page 9 of 76

Programmable Logic Controller
Application Specification SD-1032

2. provides ease of customer use. Ease of customer use relates to logic that provides plant personnel a
quick understanding as to how the machine processes the part, logic that can be quickly used to
troubleshoot failures, and logic that can be easily used to verify part quality. The Nexteer libraries provide
common structure and naming conventions for the purpose of improved plant production, independent of
which OEM supplied the equipment.

3. facilitates the OEM design and Nexteer logic approval process. Nexteer’s specifications require
logic/software approval prior to MQ1. Nexteer’s approval process, adherence to this specification, and
use of the logic libraries, provides an opportunity for the OEM to demonstrate compliance to the
requirements.

1.3 Critical Principle - Control Functions in the Event of Failure

1.3.1 Control Functions in the Event of Failure: the controls systems software design shall include appropriate
measures such that failures within the electrical equipment do not cause the system to incorrectly process
the part, and failures within the electrical equipment shall not cause the system to qualify a Reject Part as a
Good Part. Appropriate measures shall include detection of, and indication of, such failures.

To clarify: Nexteer specifications and logic libraries use the terms “Back check”, “Back checking”, or
“Back checked” to indicate the logic that takes appropriate measures to protect against such failures.

Back checking is a phrase that Nexteer uses relating to logic that both verifies the proper input device
operation and detects input failure.

Back checking verifies the operation (action) of the input device. Back checking also verifies the operation
(action) of the PLC input card electronics.

Back checking also verifies the operation (action) of communications, whether parallel or serial, such that
part process and quality is based upon up to date (actual and current) data, not based upon stale data
(retained, old, or previous-part data).

Failure detection (back checking) may either stop the machine immediately, or disallow the start of the next
cycle, depending on the application.

Revision 09JA25 Page 10 of 76

Programmable Logic Controller
Application Specification SD-1032

2. Standard Logic Requirements (associated routine name)

Nexteer’s standard logic (Main Task) functional requirements are described within this chapter. Each clause of this
chapter details a logic topic and typically indicates which Nexteer routine(s) is associated with that logic topic. The
routines provided in the Main Program of the logic Nexteer_Library file shall be used for all applications;
programmed on all equipment. Additional routines from the Nexteer_Library program is detailed elsewhere within
this specification.

Nexteer’s logic organization, structure, and naming conventions are described in Annex B.

2.1 Main Program Control (R00_Main routine)

Requirements:

2.1.1 The routine named Main shall be assigned as the main routine (within the main program’s configuration
properties, and within the configurations properties for all station programs for a multiple station system).

2.1.2 The Main routine shall include logic that controls the deterministic (once-per-scan) update of discrete and
analog I/O tags for all module and slot-based signals (module data). Input tags shall be mapped from the
module data; output tags shall be mapped to the module data. The I/O tags shall be used throughout the
logic.

Note: Aliasing does not accomplish deterministic, once-per-scan updates.

Note: Communications with auxiliary devices such as cameras and servos, when mapped within a device-
associated routine, are not required to be mapped in the Main routine.

Figure 1: Deterministic Update of Inputs

2.1.3 Each program’s Main routine shall include logic that unconditionally calls (jumps to) all other routines of the
program. The routines shall be called in the same rung-order as is visible in the controller organizer.

Guidance:

2.1.4 The only additional logic that should be included in the Main routine is miscellaneous logic, such as the
logic shown within the example files’ Main routines.

2.1.5 The Main routine may include general logic for indicator lights.

2.1.6 The deterministic (once-per-scan) update of station I/O tags on multiple station equipment can be
programmed within the controller’s Main program or within each associated station’s Main program.

Revision 09JA25 Page 11 of 76

Programmable Logic Controller
Application Specification SD-1032

2.2 Mode Selection (R01_Mode Routine)

Requirements:

2.2.1 The Mode routine shall include all logic that controls the selection of modes.

2.2.2 The machine control system shall power up with no mode active. After selection, one mode, and only one
mode, shall be active.

Note: Being in an E-Stop condition should not deactivate a mode selection.

2.2.3 At a minimum, all machines shall include two modes – Manual and Automatic. Machine motion shall only be
enabled when a mode is active.

1. Manual Mode - Manual mode allows individual motions to be commanded. Manual mode is not a forced
logical “step through the machine sequence” but is a means for operators and maintenance to exercise
any individual motion. The system shall not be allowed to switch to manual mode (from auto mode) while
the machine is in cycle.

2. Automatic Mode - Automatic mode is the mode that allows normal machine cycles and prohibits manual
motions. Automatic mode does not initiate any machine motions.

Guidance:

2.2.4 Other operating modes may be included on the machine. However, many additional machine processes are
typically subcategories of Manual mode or Automatic mode and are not as such an additional type of mode.
Refer to the Cycle routine section below for examples of Return All and Calibration which are both a type of
cycle – not a mode.

2.2.5 The requirements for PSDI, an additional type of cycle that is allowed for specific applications, are detailed
in SD-011.

2.2.6 For multiple station equipment with multiple programs, mode selection logic should be programmed within
both the Main program’s Mode routine and within each station’s Mode routine.

2.3 Model Selection (R02_Model Routine)

Requirements:

2.3.1 The Model routine shall include all logic that controls the selection, copying, editing and configuration of
models.

2.3.2 The machine control system shall power up with no model selected. After selection, one model, and only
one model, shall be selected.

2.3.3 The selected model shall not be allowed to change while the machine is in cycle.

2.3.4 Login is required to allow model editing, copying or any other model configuration changes.

Guidance:

2.3.5 The number of models and the u_ModelSetup UDT may be modified as needed to meet the application.

2.3.6 For multiple station equipment with multiple programs, model selection logic should be programmed within
the lead-off (part load) station’s Model routine and the model selected stored within the pallet data array.
Downstream station’s Model routine should load the model setup based on the model selected value stored
in the pallet data array when a new pallet arrives at the station.

Note: Other model selection methods are allowed, such as Operator selection through the HMI at each
station (often triggered by a pallet being configured as the Changeover First Pallet).

Revision 09JA25 Page 12 of 76

Programmable Logic Controller
Application Specification SD-1032

2.4 Precondition and Initiate Machine Cycle (R03_Cycle Routine)

Requirements:

2.4.1 The Cycle routine shall include the logic that is a precondition to the machine sequence, including logic that
indicates initial conditions, indicates initial positions, controls the initiation of Machine In Cycle (MIC), and
controls the Return All (Homing) logic for machine motions.

2.4.2 The Cycle routine shall include the following functions and output-energize instructions:

1. Cycle_ResetAllMemories – output-energize instruction that resets memories affecting, storing, or
otherwise relating to part status and part quality. Requirements are detailed below.

2. Cycle_AllReturned – output-energize instruction indicating that all motions are returned or retracted to the
typical home position, based on positional indication consisting of XIO contacts from all returned output
motions completed tags and positional sensors for motions not controlled by standard motion output logic.

Note: The output motion completed tag shall be used for all motions controlled by standard motion
output logic instead of position sensor inputs, making sure home motion outputs are holding actuators
in the returned position to prevent unexpected movement.

3. Cycle_MemoriesAreReset – output-energize instruction indicating that all memories affecting, storing, or
otherwise relating to part status and part quality have been reset or nullified.

4. Cycle_InitialConditions – output-energize instruction indicating the combination of conditions required to
allow the initiation of machine cycle.

5. Cycle_StationArmed – output-energize instruction, used for each station on an asynchronous assembly
line, indicating and allowing the station to go into cycle. Station Armed shall be operator-initiated by an
HMI pushbutton.

Note: Station Armed allows the machine in cycle (MIC); MIC is a separate requirement detailed below.
MIC for each station on an assembly line is typically initiated upon Pallet Presence with a part ok to be
worked on (but only when the StationArmed is energized). Operator de-energizing StationArmed can be
used to hold a pallet from cycling until the station is, again, intentionally Armed.

6. Cycle_AllowCycleStart – output-energize instruction indicating combined returned, initial, and other
conditions required to allow machine cycle start or allow the machine cycle to be restarted.

Note: Machine conditions such as the main air pressure or hydraulic oil temperature can be
programmed in the initial conditions above, here in the allow cycle start, or in machine faults depending
on the application.

7. Cycle_CycleStartPulse – the cycle start logic is application specific.

8. Cycle_AbortPulse – an HMI button-initiate pulse to abort the current machine cycle; the abort cycle logic
shall be included on all machines.

9. Cycle_MIC – output-energize instruction indicating and allowing machine in cycle with requirements as
detailed below.

10. Cycle_ReturnAll – output-energize instruction initiating and allowing return-to-home or return to initial
positions as detailed below.

2.4.3 Machine In Cycle (MIC) shall be the control function, and output-energize instruction, that makes a machine
capable of producing automatic (sequenced) motions. Motion shall occur only when MIC is energized.

To clarify: MIC shall be the one output-energize instruction that enables sequenced motions for the duration
of the cycle. Auto mode shall not be used throughout the logic to allow motions. Non-motion processes
(such as reading an RFID tag or communicating with traceability) may be initiated prior to, and/or
independent of, MIC.

Revision 09JA25 Page 13 of 76

Programmable Logic Controller
Application Specification SD-1032

Note: On an asynchronous assembly line MIC is typically not required to produce conveyance and non-
hazardous pallet control motions.

Note: The Nexteer_Library includes multiple MIC output-energize instructions; all but one output-energize
instruction shall be removed from the logic.

2.4.4 The machine shall be allowed to enter cycle (MIC shall energize) only when all the following conditions are
met:

1. Automatic mode is selected.

2. All motions and devices are in their initial state (typically, indicated by all the returned sensors being ON).

3. No faults are present on the machine.

4. All safety devices are in the “safe” condition.

5. A new part has been loaded or has entered the machines.

6. The station is Armed (for stations on an asynchronous assembly line).

2.4.5 Machine cycle shall be initiated by the operator. On single cycle machines, machine cycle shall be initiated
by operator actuation of a hardwired device(s). On continuous cycle machines, machine cycle should be
initiated by an HMI pushbutton. Exception: for each station on an asynchronous assembly line, Station
Armed shall be operator-initiated by an HMI pushbutton; machine cycle shall be initiated upon the presence
of a pallet and the part is ok to be worked on.

Note: Machine motion shall not occur based on mode selection.

1. Single cycle machines execute one complete cycle for each initiation by the operator.

2. Continuous cycle machines execute repetitive cycles until halted by operator action or a fault condition.
The first cycle shall be initiated by the operator.

3. A Cycle Stop pushbutton (either hardwired or on the HMI) shall be provided on continuous cycle
machines. When the Cycle Stop pushbutton is pressed the machine is allowed to finish processing the
part, return the machine to its normal starting position, and then MIC is de-energized.

4. Logic controlled by a hardwired cycle start device shall include a one-shot to verify that a failure of the
device ON does not cause consecutive cycles to occur.

2.4.6 Reset All Memories shall be the control function, and output-energize instruction, that resets memories
affecting, storing, or otherwise relating to part status and part quality.

To clarify: Memories include all data types (such as DINTs and STRINGs), as well as BOOL tags that have
been sealed in.

To clarify: Part status and part quality memories include Good Part, Reject Part, part test results, and any
part data storage from the previous cycle. Part status and part quality memories also include previous cycle
data from a pallet on pallet transfer systems, and shift registers on other part-indexed systems.

Revision 09JA25 Page 14 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 2: Reset All Memories Examples

To clarify: Resetting STRING quality memories is accomplished by filling the string tag with null characters
(ACSII $00) in the data but is not accomplished by merely resetting the string length to zero.

Figure 3: Reset String Memory Example

2.4.7 Logic to initiate Reset All Memories is application specific. At a minimum, Reset All Memories shall be
initiated upon control system power-up and upon removal of the part (see Figure 4 below).

To clarify: Removal of the part includes the release of a pallet on conveyor lines, or the initiation of index
(shift pulse) on dial tables and indexing machines.

To clarify: Removal of the part includes interruption of a light curtain on operator unload machines that do
not include Part Presence sensing. (It shall be presumed that the part has been removed).

Revision 09JA25 Page 15 of 76

Programmable Logic Controller
Application Specification SD-1032

To clarify: On an automatic part-transfer system that does not include Part Presence sensing at fixtures,
and mechanically allows the part to be removed from the fixture, removal of the part includes interruption of
an interlocked safety gate. (It shall be presumed that the part has been removed).

Figure 4: Reset All Memories Logic Rung

2.4.8 The Return All output-energize instruction shall only be enabled when a mode is active.

1. The Return All output-energize instruction can be enabled in Manual and Automatic mode; however, the
Return All output-energize instruction shall not be enabled when Machine In Cycle is active.

2. When in Manual mode the Return All output-energize instruction shall only be enabled when Return All
pushbutton input remains enabled.

3. When in Automatic mode, the Return All output-energize instruction may be enabled through one of two
methods:

a. when the Return All pushbutton input remains enabled, or

b. as an automatic or sequenced Return All Cycle (initiated by momentarily pressing the Return All
pushbutton).

4. Logic controlled by a hardwired Return All pushbutton shall include a one-shot or pulse to verify that a
failure of the pushbutton or input does not cause machine motion.

2.4.9 Additionally, special-purpose machine cycles such as a Calibration Cycle, shall only be enabled when in
automatic mode.

Guidance:

2.4.10 The Cycle routine may include logic for cycle-related indicator lights.

2.4.11 The retentive CycleTime timer provided for HMI display may be programmed in the Cycle routine or an HMI
routine.

Revision 09JA25 Page 16 of 76

Programmable Logic Controller
Application Specification SD-1032

2.4.12 Logic to verify operator tasks such as part pre-assembly may be programmed within the Cycle routine or
within the Sequence routine. However, operator tasks that are required to occur in a specific sequence or
specific order shall be programmed within a sequence routine. Refer to the Machine Sequence details
below.

2.5 Signal Conditioning (R04_Analog Routine)

Requirements:

2.5.1 Analog signals shall be verified to move from a “reject” value to a “within-limits” value. The signal shall be
verified to have returned to the reject value or range (typically to a known initial position) as part of initial
conditions in order to allow the start of the next cycle.

To clarify: The logic shall detect and prevent a common failure from classifying the part as a Good Part,
such as a broken wire that allows a signal to drift into the good part range.

Guidance:

2.5.2 The analog routine should include the logic that controls the scaling and calculating of all analog and
similar signals.

2.5.3 The analog routine may include the logic to compare the signals to limits, including the back check logic.

2.6 Machine Sequence (R05_Sequence Routine)

Requirements:

2.6.1 The Sequence routine shall include all the logic that steps through the machine cycle. The machine
sequence includes stepping through all sequenced motions, stepping through the machine processes, and
initiating each process-based action.

Note: Examples of process-based action steps include initiating a quality check or initiating a
communication.

To clarify: All sequence control logic shall be in the sequence routine. As an example: The logic for raising a
cylinder and then engaging a rod-lock shall include two separate sequence steps programmed within the
sequence routine – the rod-lock shall not be controlled solely by the cylinder controlling sequence step plus
time-delay logic located within the OutputMotions routine.

2.6.2 The Sequence routine shall include an output-energize instruction for each sequence-driven task.

To clarify: Each sequence-driven task includes: each machine function, each step, each process, and each
command originated from the sequence. Each shall have an individual output-energize instruction in the
Sequence routine. One output-energize instruction shall not initiate more than one machine task. Two
output-energize instructions are required even when identical machine conditions initiate each tasks.

As an example: The example process requires that the same conditions both retract the Notch Punch and
raise the Front Tooling Slide. The sequence routine includes a separate output-energize instruction for both
the Retract Punch step and the Raise Slide step (see Figure 5, 6, and 7 as follows).

Revision 09JA25 Page 17 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 5: Sequence Structure - Preferred – Two Machine Tasks / Two Rungs

Figure 6: Sequence Structure – Allowed – Two Machine Tasks / Two Instructions

Figure 7: Sequence Structure – NOT ALLOWED – Two Machine Tasks / One Instruction

2.6.3 The Sequence routine shall include only sequence and process steps.

Revision 09JA25 Page 18 of 76

Programmable Logic Controller
Application Specification SD-1032

To clarify: Sequence logic includes the output-energize instructions for process steps such as initiating data
monitoring, initiating sending traceability data, or initiating quality limit checks. However, the logic that
performs the quality limit checks is to be programmed within the Quality routine - not within the sequence
routine.

2.6.4 Each sequence-driven task shall be verified to have been completed within the sequence routine.

To clarify: Each output-energize instruction within the sequence routine can be considered as an “output”
from the sequence routine to another routine. Similarly then, each contact or signal from other routines (or
input devices) into the sequence routine can be considered as a “completed” input to the sequence from
the other routines. Therefore, the sequence routine logic needs to verify that each output from the
sequence routine receives a completed input into the sequence.

As an example: When an RFID write is initiated by the sequence, a write-completed contact from the RFID
routine must be used within the sequence routine to ensure a properly cycled part.

2.6.5 Each sequence step rung shall include a normally-opened (XIC) contact from Machine In Cycle MIC. The
first automatic sequence step is nearly always initiated only by MIC. Exception: Logic included in the
sequence routine that verifies operator tasks such as part pre-assembly and are not required to occur in a
specific sequence, typically should not include the MIC contact.

2.6.6 The Sequence routine shall include a reset sequence output-energize instruction named
“Seq_ResetSequence”. The reset sequence output-energize instruction shall be the first solved rung within
the Sequence routine (for solve-order reasons). The reset sequence output-energize instruction shall have
a normally-closed (XIO) contact included in each sequence step rung, to reset the entire sequence. The
ResetSequence rung shall be structured as follows (see Figure 8 below):

Figure 8: Reset Sequence Logic

2.6.7 The sequence shall be reset upon:

- loss of MIC.

- after cycle complete.

- the first scan after a cycle is aborted (an AbortPulse).

- selection of manual mode.

Revision 09JA25 Page 19 of 76

Programmable Logic Controller
Application Specification SD-1032

2.6.8 From the Nexteer_Library logic, branches that include an AFI instruction are shown as optional and are
dependent upon the application. The sequence can be required to reset upon:

- paused cycle (loss of MIC) while a reject part is present.

- detection of an Immediate Stop fault.

2.6.9 Operator tasks (such as part pre-assembly) that are required to occur in a specific sequence shall be
programmed within a sequence routine(s).

1. The assembly sequence shall follow the correct assembly order.

Note: Nexteer’s manufacturing engineer purchasing the equipment details the required assembly
sequence.

2. All associated sensors and error-proofing shall be monitored during the entire process step(s). Refer to
the Hand Assembly of Parts portion of Annex C.

2.6.10 Sequence Step tag names shall include step numbers and numbers should be in ascending, consecutive
order. Gaps in the numbering scheme are allowed (such as step numbering 10, 20, 30). Sequence steps that
execute simultaneously may have the same step number.

Guidance:

2.6.11 Logic in the sequence routine should be kept simple.

Note: Adherence to simple logic and format will assist the destination plant support personnel to
understand the machine process more-readily.

2.6.12 Refer to Annex C for application details relating to more-complex, special, multiple, or customized sequence
examples.

2.6.13 The sequence routine can include reject-control logic as detailed in the reject-handling requirements of the
Part Quality Logic section below.

2.6.14 The logic libraries include common reset-sequence examples. Additional sequence reset conditions that
should be included in the sequence reset logic depend on each machine’s application. Branches (from the
Nexteer_Library logic) that include an AFI instruction are shown as optional and may be removed when not
implemented by the application.

2.7 Part Quality Logic (R06_Quality Routine)

Requirements:

2.7.1 The Quality routine shall include all of the logic that determines the part quality, logically indicates the part
quality status, and controls operator reject-part handling (based on the part quality status).

2.7.2 Part quality logic shall be designed to prevent qualifying a Reject Part as a Good Part.

2.7.3 The part quality logic shall reset Good Part status upon removal of the part.

Note: Use of a contact from the Reset All Memories as detailed in the Cycle routine above meets this
specification requirement.

1. Where no Part Present signal is provided, the part quality logic shall reset a Good Part status upon change
of mode.

2. Where no Part Present signal is provided at fixtures of an automatic part-transfer system that
mechanically allow the part to be removed, the part quality logic shall reset Good Part status upon the
opening of an interlocked safety gate for each fixture that can be accessed.

Note: On automatic part-transfer systems, solenoid-locking interlock switches should be considered to
minimize the number of rejected (scrapped) parts.

Revision 09JA25 Page 20 of 76

Programmable Logic Controller
Application Specification SD-1032

2.7.4 The part quality logic that interfaces with a part-quality-determining-device shall be designed to verify the
device is operating as required. Devices and interface signals include sensors, auxiliary equipment (such as
instrumentation), analog signals, and communication signals.

Refer to the Control Functions in the Event of Failure items under the Critical Principle section above.

2.7.5 The control system, including instrumentation and sensors, shall provide a PLC Good Part input when the
desirable component, dimension, or feature is detected.

1. The logic shall detect that the Good Part input transitions from OFF to ON, or from an out-of-limit value to a
within-limit value.

Note: This input transition shall occur during the part-process, not at power-up of the system.

2. The logic design shall give the highest priority to classifying a part as a Reject Part, over classification as
a Good Part.

To clarify: At the logic scan for part quality check, the logic shall check for a reject first. As an example:
If the instrumentation provides the PLC with both a Good Part and a Reject Part input, at the part quality
check scan the logic shall classify a part as a Reject Part because the Reject Part input is ON. At the
part quality check scan the logic shall then only classify as a Good Part if not a Reject Part and if the
Good Part input transitions to ON. At the part quality check the logic shall also classify a part as a
Reject Part if neither input transitions ON.

2.7.6 Logic for part-quality data storage (the logic that stores or saves the part quality data into tags for use by
traceability, or onto RFID) shall be located in the Quality routine.

Note: The logic that transfers the status byte(s) to traceability or writes the RFID data shall be in the
appropriate traceability or RFID routines respectively.

2.7.7 Means shall be provided to confirm that reject parts are disposed of or handled properly. Reject part status
and data shall be written to traceability or to RFID, and the write-complete verified, prior to the logic
allowing any reject disposal, reject-handling, and reject removal as detailed below.

2.7.8 The Reject Part Present output-energize instruction shall seal-in until the reject-handling reset sequence is
completed. The Reject Part Present output-energize instruction shall be maintained during power loss
(typically through use of an OTL).

2.7.9 When error proofing includes communication of part status (such as communication to traceability or to on-
the-part RFID) the logic shall require the following reject-handling:

1. The logic shall annunciate a rejected part is present.

2. The communication of reject part status shall be included in the machine sequence logic.

3. The machine should (typically) stop processing the part upon a reject and return to the home position.

4. The logic shall verify that the part status has been communicated to the traceability or on-the-part RFID
system.

5. Upon completion of the reject part communication, the Reject Part Present output-energize instruction
may be reset.

2.7.10 When error proofing includes hand-unload to a reject chute or bin, the logic shall require the following
reject-handling reset sequence:

1. The logic shall annunciate a rejected part is present and prohibit the machine from cycling again until the
acknowledgement process has been completed.

2. The machine should (typically) stop processing the part upon a reject.

Note: Most machine motions are allowed to return to the home position.

Revision 09JA25 Page 21 of 76

Programmable Logic Controller
Application Specification SD-1032

3. The reject part shall remain clamped, or, where no part clamp is provided, at least one machine motion
shall stay advanced to mechanically prevent the removal of the part.

4. The logic shall require the operator to put the machine in Manual mode and unclamp the part (or retract
the appropriate motion).

5. The logic shall verify that the part has been removed from the machine, which may be accomplished by
verifying that the part present sensor switches to an OFF state. If a part present sensor does not exist,
other means, such as a light curtain being broken, may be used to indicate part removal.

6. The logic shall not permit the machine to be switched back into Automatic mode until the reject part has
been placed into the reject chute or bin. The correct operation of the reject chute sensor shall be verified
(such as logic requiring a transition from an OFF state to an ON state).

7. Upon completion of the reject-handling reset sequence the Reject Part Present output-energize
instruction may be reset. The machine is then permitted to go into Automatic mode.

2.7.11 For machines that include automatic unload of reject parts the logic shall meet the following reject-handling
reset sequence.

1. The part shall be placed in a reject chute or repair loop, depending on the application.

2. The reject chute sensor must transition from an OFF state to an ON state when the part passes down the
chute. The sensor shall transition back to an OFF state in order to complete the acknowledgement
process.

3. Upon completion of the reject-handling reset sequence the Reject Part Present output-energize
instruction may be reset, and the machine may now be permitted to begin another cycle.

Guidance:

2.7.12 Applications may require a part to be rejected when there is a loss of MIC. Depending on the process or
depending on what point in the process the machine drops out of cycle, the part may be required to be
rejected even though a quality check may not have occurred. Applications may require a part to be rejected
if the cycle is interrupted after a particular process step has been started but not completed. Examples
include heat treating, welding, and other processes.

2.7.13 Back check logic for part quality-related inputs including discrete, analog, or communication values may be
programmed in the Quality routine although they are typically programmed in a fault routine.

2.7.14 Applications may require the part status to be classified as Part In Process (typically upon cycle initiation)
until classified as a Reject Part or Good Part.

2.7.15 Logic to communicate the part status to traceability or RFID is typically not programmed in the Quality
routine.

2.7.16 Logic for quality-related indicator lights may be programmed in the quality routine or in an output-related
routine.

2.8 Solenoid Control (R07_OutputMotions Routine)

Requirements:

2.8.1 The OutputMotions routine shall include the logic that controls all machine solenoid-controlled motion.

1. Logic that controls machine solenoid motion includes collision avoidance, auto allow, enable motion,
dwell timers, fault motion timers, and the motion not clear HMI display output-energize instructions as
detailed within this solenoid control section.

2. The OutputMotions routine shall not include logic that coordinates the sequential control of two or more
related outputs. Sequence logic shall be in the Sequence routine.

Revision 09JA25 Page 22 of 76

Programmable Logic Controller
Application Specification SD-1032

2.8.2 Motion shall be prevented when selecting a mode, and motion shall be prevented when switching between
modes. A separate action by the operator (clearly identified as a motion initiating action) is required in order
for any motion to occur.

2.8.3 Logic for each motion shall include collision avoidance output-energize instruction(s).

Note: Collision avoidance may be one output-energize instruction per actuator, or two output-energize
instructions (one for each direction of an actuator).

Note: Other terms used for “collision avoidance” include “clear to move”, “motion interlocks,” or “motion
constraints.”

1. Motions shall have minimal collision avoidance logic. Collision avoidance shall only be used to prevent
damage to the equipment or to prevent damage to the part (see Figure 9 below).

Figure 9: Examples of Minimum Collision Avoidance Logic

2. Collision avoidance logic shall be active in both manual and automatic modes.

Note: Collision avoidance includes a “Clear To” contact in all motion-initiation branches of motion-
control logic (see Figure 10 next page).

Figure 10: Example Use of Collision Avoidance Logic

2.8.4 Logic for each direction of motion shall include an auto allow output-energize instruction. The auto allow
logic should be kept simple per the following:

1. The auto allow for the motion towards the work position (moves away from the home position) is typically
enabled by a normally-open (XIC) contact from the motion-initiating sequence step (a) and a normally-

2.8.3 (2)

Revision 09JA25 Page 23 of 76

Programmable Logic Controller
Application Specification SD-1032

closed (XIO) contact from the sequence step that initiates the motion towards the home position (b) (see
Figure 11 below).

Figure 11: Example Auto Allow Logic (Motion Towards the Work Position)

2. The auto allow for the motion that returns to the home position is typically enabled by a normally-open
(XIC) contact from the motion-initiating sequence step and a normally-closed (XIO) contact from Cycle
Complete (see Figure 12 below).

Figure 12: Example Auto Allow Logic (Motion Toward Home Position)

3. Machine sequences that require a motion to be enabled multiple times within the sequence or requires
enabling a motion at varying process steps dependent on such conditions as model selection or part-
reprocess, require additional contacts in each motion’s auto allow logic.

2.8.5 Each solenoid control rung shall be structured as follows (see Figure 13 below):

Figure 13: Example Solenoid Control Rung

1. The top branch of the solenoid control rung shall include MIC and the auto allow to initiate the output.

Note: If the output is required for multiple sequence steps during the cycle, these multiple sequence
conditions shall be programmed in the auto allow rung prior to the solenoid-control rung.

2. The second branch of the solenoid control rung shall include the manual initiation of the output.

3. The third branch of the solenoid control rung shall include the Return All initiation logic (for return-
direction motions).

4. The bottom branch of the solenoid control rung shall include the solenoid seal-in logic, including a seal-in
around the Clear To move contact.

2.8.4 (1-a) 2.8.4 (1-b) 2.8.4

2.8.4 (2)

2.8.5 (1)

2.8.5 (2)

2.8.5 (3)

2.8.5 (4)

Revision 09JA25 Page 24 of 76

Programmable Logic Controller
Application Specification SD-1032

2.8.6 Solenoids shall remain energized (seal-in) until the opposite motion is initiated.

1. Exception 1: A sequence step that needs to de-pressurize a cylinder by de-energizing an output without
energizing the opposite motion direction.

2. Exception 2: Certain hydraulic motion solenoids may require the solenoid to not seal-in, since a continual
energized solenoid can overheat the hydraulic fluid.

2.8.7 Solenoids shall remain energized (seal-in) based upon the actuation of the positional sensor indicating
completion of the associated motion.

Note: Solenoid seal-in is required for all motions; the exceptions listed below are exceptions to the
“positional sensor” portion of this specification item.

1. Exception 1: A normally-closed (XIO) contact from the opposing-direction positional sensor should be
used, indicating a start of the motion, when the positional sensor indicating completion of the motion does
not exist.

2. Exception 2: Positional sensor contacts shall not be used for solenoid seal-in when a double-solenoid,
detented valve is being controlled. Since a detented valve mechanically seals-in when electrically
energized, the logic should seal-in upon command such that the logical-state of the output, and the
electrical-state of the output, are consistent with the actual mechanical condition of the valve.

2.8.8 Conditions that remove power to the output include logical E-Stop conditions that remove logical-power
when hardwired power has been removed from the solenoid. The logical E-Stop contact also breaks the
solenoid seal-in when the machine is powered down (see Figure 14 below).

2.8.9 All outputs that initiate opposing motions shall be logically linked such that both motions cannot be
energized at the same time (see Figure 14 below).

Figure 14: Remove Solenoid Power

2.8.10 A motion dwell timer for each position of motion shall be programmed in the rung immediately following the
solenoid control rung. Timer presets may be adjusted for sensor debounce as needed.

Note: The Nexteer_Library dwell timers are initially preset to 0000 to indicate that timers can be set as low
as practicable based on the application, thus minimizing cycle time.

2.8.11 Logic that controls single-solenoid motion valves shall include all rungs (collision avoidance, auto allow,
enable motion, dwell timers, fault motion timers, and motion not clear HMI display output-energize
instructions) for each motion direction, consistent with logic controlling double-solenoid valves (see Figure
15 next page).

1. The branch controlling the solenoid output-energize instruction does not include a normally-closed (XIO)
contact driven by the opposite-direction output (since the opposite-direction output does not exist).

2. The rung enabling the non-solenoid direction of motion contains the Out_Enable output-energize
instruction to logically link (disable) the solenoid.

2.8.8

2.8.9

Revision 09JA25 Page 25 of 76

Programmable Logic Controller
Application Specification SD-1032

3. The rung enabling the non-solenoid direction of motion does not contain seal-in logic.

Figure 15: Example Single Solenoid Motion Valve Logic

Guidance:

2.8.12 In addition to the motion dwell timers (provided for sensor debounce as required above), process delay or
process dwell timers may be programmed in the OutputMotions routine, or they may be programmed within
the Sequence routine.

2.8.13 Diagnostic logic, including motion fault timers, as shown in the logic libraries, may be programmed in rungs
following the solenoid control rungs, or within the Immediate Stop fault routine.

2.8.14 The auto allow output-energize instructions may be eliminated for machines that require only minimal (or
simple) auto allow logic meeting all of the following:

1. The machine has minimal motions

2. The auto allow logic for all motions includes only two sequence step contacts per motion (consistent with
item 2.8.4 above), and

3. All auto allow output-energize instructions are eliminated. The two sequence step contacts per motion
(consistent with items 2.8.4 above) shall be programmed in each appropriate solenoid control rung.

2.8.15 The OutputMotions routine may include conventional motor-starter controlled motions, or the motor-starter
logic may be in another output-related or device related routine.

2.8.11 (1) 2.8.11 (2)

2.8.11 (3)

2.8.11 (2)

Revision 09JA25 Page 26 of 76

Programmable Logic Controller
Application Specification SD-1032

2.8.16 Motor starter logic format for conventional motors (run independent of machine sequence) should be
consistent with the format shown below (see Figure 16 below).

Figure 16: Example Motor Starter (Start/Stop) Logic

2.8.17 Motor starter logic format for sequence-controlled motors should be consistent with the solenoid control
format detailed in this Solenoid Control section, including rungs such as the collision avoidance, auto allow,
solenoid control, and motion timer rungs where applicable (see Figure 17 below).

Figure 17: Example Sequence-Controlled Motor Starter Logic

2.8.18 Other general outputs may be programmed in the OutputMotions routine.

Note: Machine motions related to servos are typically programmed in a separate servo routine. Indicator
lights are typically programmed in the routines that relates to the light’s purpose.

2.9 Machine Diagnostics – Display Control (multiple routines)

Nexteer’s machine diagnostics, display hierarchy, and diagnostic control philosophy are described in Annex A,
entitled “Machine Diagnostic Scheme and Hierarchy.” An understanding of the Annex A’s terms will aid in an
understanding of the following machine diagnostics requirements. The use of Nexteer fault and message routines
plus Nexteer HMI screens support compliance with the requirements of this clause.

Requirements:

2.9.1 The logic for fault display control shall be located in the Fault Control routine. The logic for message display
control shall be located in the Message routine.

2.9.2 All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault” button/switch. The
“Reset Fault” button/switch shall reset all fault conditions that no longer exist. The “Reset Fault”
button/switch shall only reset fault conditions when the machine is not in cycle.

Reference: To view all faults when multiple faults exist, the HMI fault history screen must be selected.
Selection of the fault history screen is not controlled by the logic. Refer to SD-1020.

Revision 09JA25 Page 27 of 76

Programmable Logic Controller
Application Specification SD-1032

2.9.3 When multiple machine messages exist, the logic shall automatically scroll through the messages,
displaying each for 3 seconds. After the last message has been displayed the scrolling shall start again at
the first message.

2.9.4 The display text shall be static messages contained within the HMI program following the Nexteer standard
fault and machine message display approach demonstrated in the HMI library files. Fault and message HMI
display text shall not be stored within the PLC as a text string.

Note: Storing fault and message text in the PLC to display on the HMI as an embedded string variable
significantly impacts the controller HMI/MSG (Class 3) communication utilization.

Guidance:

2.9.5 Fault display text requirements, naming and numbering, is described in SD-1020, Nexteer Automotive Human
Machine Interface Application Specification.

2.10 Machine Diagnostics – Conditions and Detection logic

Requirements:

2.10.1 Any condition that stops a cycle shall create and display a machine fault.

2.10.2 Any condition that prevents the cycle from starting shall be displayed as a fault, message, or status.

2.10.3 All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault” button/switch.

2.10.4 All faults shall be classified as either “Immediate Stop” faults or “Cycle Stop” faults. The logic for
Immediate Stop fault conditions and detection shall be located in the Fault_ImmedStop routine. The logic for
Cycle Stop fault conditions and detection shall be located in the Fault_CycleStop routine.

2.10.5 Immediate Stop faults shall immediately remove power to MIC, stop commanding all motions, and stop
processing of the part.

2.10.6 Cycle Stop faults shall allow the machine to finish the current cycle, returning the machine to its normal
start position, and then drop MIC. Cycle Stop faults that are detected prior to the start of a cycle shall
prohibit the start of cycle.

2.10.7 Emergency Stop inputs, safety gate inputs, and indication of situations that could cause harm to an operator
or cause harm to the machine (such as a fault from a servo system) shall be classified as Immediate Stop
faults.

2.10.8 All machines, and every station on a multiple station system, shall include an immediate stop cycle overtime
fault.

1. The cycle overtime timer shall be active whenever the machine is in cycle.

2. On single-cycle machines the timer for the cycle overtime fault is driven by MIC (only).

3. For continuous cycle machines, MIC also drives the fault timer, but the fault is inhibited between cycles.
The cycle overtime fault shall not be inhibited by a single condition that can fail, such as a single limit
switch input contact, because such a failure can lead to inhibiting this safety-related cycle overtime fault.

Note: Resetting the cycle overtime timer with a pulse from a limit switch input is an allowed method to
implement a single condition into this cycle overtime fault.

4. Machines which have multiple cycles (such as MIC and Return All Cycle) shall include a cycle overtime
fault for each cycle.

Note: All cycles are allowed to enable one cycle overtime timer and fault.

2.10.9 All motion sensors shall be back checked and generate an Immediate Stop fault upon failure detection.

Revision 09JA25 Page 28 of 76

Programmable Logic Controller
Application Specification SD-1032

1. For all motions that have more than one positional sensor, a Motion Sensor Error fault shall be included.
The fault shall be detected if the motion is both “advanced” and “retracted”, or if the sensors indicate the
motion to be at more than one position (such as mid-position and advanced).

Note: Motion Sensor Error faults shall be provided for operator hand-powered motions such as a hand-
clamp.

2. For all motions that have only one positional sensor, back checking shall be accomplished by two
opposite-state uses of the sensor. A sensor contact shall be used in the machine’s all returned logic, and
an opposite-state contact shall be used in the motion dwell timer. This motion dwell timer shall be
included in the sequence logic to indicate the completion of a sequence step. Thus, upon a sensor failure,
two opposite-state uses of the sensor will either generate a motion timer fault or a Not Returned
indication.

2.10.10 An Immediate Stop motion overtime fault shall be included for each logic-controlled actuator. Exception: A
motion overtime fault is not required for actuators that include following-error faults, such as servo-
controlled actuators.

Note: The motion overtime timers may enable a single fault per actuator or two faults, one for each direction
of motion.

2.10.11 All non-motion sensors (such as part quality sensors, part present, and pick-bin sensors) shall be back
checked. Failures that are detected during a machine cycle shall cause an Immediate Stop fault upon
failure detection. Failures that are detected between machine cycles shall cause either a Cycle Stop fault
(preferred) or an Immediate Stop fault.

2.10.12 The logic for message conditions and detection shall be located in the Message routine.

2.10.13 The logic for machine status control shall be located in the MachStatus routine. The logic for part status
control shall be located in the PartStatus routine. The logic for operator prompt control shall be located in
the OperPrompt routine.

Guidance:

2.10.14 PLC Battery Low should be indicated as a machine message that does not prohibit machine cycle. Also,
when the PLC Battery Low condition is present, a resettable Cycle Stop fault shall be triggered every 60
minutes until the battery is replaced.

2.10.15 The Nexteer_Library’s Fault_ImmedStop and Fault_CycleStop arrays (sized for 128 immediate stop faults
and 64 cycle stop faults) may be increased in sized for applications with numerous faults.

Revision 09JA25 Page 29 of 76

Programmable Logic Controller
Application Specification SD-1032

2.11 Standard (Main Task) Routines Required On All Machines

Requirements:

2.11.1 The routines provided in the Main Program of the
Nexteer_Library file shall be used for all applications (see
Figure 18).

2.11.2 These required routines are to be programmed on all
equipment. If the equipment does not include associated
logic functional requirements based on the application, the
routine should be deleted. For example, if analog modules or
devices are not present on the equipment, the R04_Analog
routine should be deleted.

2.11.3 For single station equipment, the routines provided in the
Main Program of the Nexteer_Library file shall be
programmed in the MainProgram.

2.11.4 For multiple station equipment with multiple programs, the
routines provided in the Main Program of the
Nexteer_Library file shall all be programmed but are
allowed to be distributed between the MainProgram
(sometimes called the ConveyanceProgram) and the Station
programs.

- Refer to Figure 19 on the following page for an example
of routine distribution within a multi-station and dial table
controller organizer.

- The routines provided in the Main Program of the
Nexteer_Library file are typically duplicated within each
station’s program.

Figure 18: Nexteer_Library Controller Organizer

Revision 09JA25 Page 30 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 19: Multiple Station Controller Organizer Views

Revision 09JA25 Page 31 of 76

Programmable Logic Controller
Application Specification SD-1032

3. Safety Logic Requirements (associated routine name)

The machine risk assessment will determine the required performance level (PL) for each safety function. The safety
controller, safety devices, and safety instructions shall be certified for use in safety applications meeting the PL
requirements of the risk assessment. Certified safety instructions providing the required PL per ISO 13849-1 shall be
used for all safety functions as demonstrated in the Safety Program of the Nexteer_Library logic file. The
requirements detailed in SD-011 Specification for Safety Circuits shall be met for all safety functions.

Nexteer’s safety logic (Safety Task) functional requirements are described within this chapter. Each clause of this
chapter details a safety function topic and indicates which Nexteer routine(s) is associated with that safety function.
The routines provided in the Safety Program of the logic Nexteer_Library file shall be used for all applications;
specific usage of safety function routines shall be used based on the application.

Nexteer’s logic organization, structure, and naming conventions are described in Annex B.

3.1 Safety Program Control (R00_Main routine)

Requirements:

3.1.1 The routine named Main shall be assigned as the main routine (within the safety program’s configuration
properties, and within the configurations properties for all station programs for a multiple station system).

3.1.2 The Main routine shall include logic that controls the deterministic (once-per-scan) update of safety I/O
tags for all safety module and slot-based signals (module data). Input tags shall be mapped from the module
data; output tags shall be mapped to the module data. Input and output module status tags shall be mapped
from the module data. The mapped safety I/O tags shall be used throughout the safety logic.

Note: Communications with auxiliary devices such as servos and robot controllers, when mapped within a
device-associated routine, are not required to be mapped in the Main routine.

Figure 20: Mapping of Safety Inputs

Revision 09JA25 Page 32 of 76

Programmable Logic Controller
Application Specification SD-1032

3.1.3 Each safety program’s Main routine shall include logic that unconditionally calls (jumps to) all other routines
of the safety program. The routines shall be called in the same rung-order as is visible in the controller
organizer.

3.1.4 The Main routine shall include the logic that monitors and controls the safety reset signal. The safety reset
signal shall be verified to transition from ON to OFF (falling edge) prior to turning on the safety reset signal
used for the reset of appropriate safety instructions. The falling edge reset is required per ISO 13849-1.

Figure 21: Safety Reset Signal – Falling Edge

3.1.5 The Main routine shall include logic for monitoring each safety module overall status. The module status is
referenced in the safety instructions using safety I/O signals from the safety modules.

Figure 22: Safety Module Status

3.1.6 All safety reset and feedback signals shall be wired into safety inputs, so the input tags are readily
accessible within the safety task logic. This prevents the need to map standard tag data into the safety
task.

Guidance:

3.1.7 The only additional safety logic that should be included in the Main routine is miscellaneous logic, such as
the logic shown within the library example files’ Main routines.

3.1.8 The deterministic (once-per-scan) update of station I/O tags on multiple station equipment can be
programmed within the controller’s Main program or within each associated station’s Main program.

3.2 Emergency Stop (R01_EmergencyStop Routine)

Requirements:

3.2.1 The EmergencyStop routine shall include the logic that monitors emergency stop devices on the machine
and provides the emergency stop safety function.

Revision 09JA25 Page 33 of 76

Programmable Logic Controller
Application Specification SD-1032

3.2.2 The Dual Channel Input Stop (DCS) certified safety instruction shall be used to monitor the redundant safety
inputs from each emergency stop device.

Note: Multiple emergency stop devices wired in series to dual channel safety inputs require a separate
contact from each device to be wired to standard inputs for individual annunciation.

3.2.3 The safety input module status and each input point status shall be monitored for proper functionality. This
input status tag shall be programmed as the “Input Status” tag within the DCS instruction.

Figure 23: Emergency Stop Input Status and DCS Instruction

3.2.4 The DCS instruction operands shall be configured as follows. Deviations shall be reviewed with assigned
Nexteer Controls Engineer.

1. Safety Function: Emergency Stop – This provides a meaningful description for how the instruction is
being used. This operand does not affect the behavior of the instruction.

2. Input Type: Equivalent – Active High, both input channels must be high (1) for the active state.
3. Discrepancy Time (msec): 500ms – The amount of time the input channels can be in an inconsistent state

from each other.
4. Restart Type: Manual
5. Cold Start Type: Automatic – Output 1 will energize when both inputs are in their active state and no faults

present on controller power up or mode change.
6. Channel A and B: Assigned safety inputs from each dual channel emergency stop device.
7. Input Status: Tag name used to monitor the safety input point status providing the connections to the

emergency stop device.
8. Reset: Tag name used to provide the safety reset function. This input is used to energize Output 1 of the

DCS instruction when Channel A and B are both active.

3.2.5 The DCS instruction(s) Output 1 (O1) operand shall be used in logic to enable the appropriate Emergency
Stop OK tag(s) representing the area or zone protected by the E-Stop devices. These tags shall control the
CROUT instruction(s) or other safety signals to devices providing the emergency stop safety function output
control.

Revision 09JA25 Page 34 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 24: Emergency Stop Status

3.2.6 The EmergencyStop routine is required in all safety programs, unless the machine risk assessment
documents the safety function is not necessary.

Guidance:

3.2.7 Applications may require different zones of emergency stop safety functions. The safety logic for the
different zones shall be contained in the R01_EmergencyStop routine and be segmented using separate
rungs, tag naming, and rung commenting to clearly distinguish between the separate zones being
controlled.

3.2.8 Configuration details for safety input modules are described in Annex B.

3.3 Safety Gate Interlocks (R02_SafetyGate Routine)

Requirements:

3.3.1 The SafetyGate routine shall include the logic that monitors safety gate interlock switch devices on the
machine and provides the appropriate safety function.

3.3.2 The Dual Channel Input Stop (DCS) certified safety instruction shall be used to monitor the safety inputs
from each interlock switch device.

Note: Multiple safety input devices wired in series to dual channel safety inputs require a separate contact
from each device to be wired to standard inputs for individual annunciation.

3.3.3 The safety input module status and each input point status shall be monitored for proper functionality. This
input status tag shall be programmed as the “Input Status” tag within the DCS instruction.

Revision 09JA25 Page 35 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 25: Safety Gate Input Status and DCS Instruction

3.3.4 The DCS instruction operands shall be configured as follows. Deviations shall be reviewed with assigned
Nexteer Controls Engineer.

1. Safety Function: Safety Gate – This provides a meaningful description for how the instruction is being
used. This operand does not affect the behavior of the instruction.

2. Input Type: Equivalent – Active High, both input channels must be high (1) for the active state.
3. Discrepancy Time (msec): 500ms – The amount of time the input channels can be in an inconsistent state

from each other.
4. Restart Type: Manual or Automatic – This selection shall be Manual for all full body access safeguarded

areas. Either selection is allowed for non-full body access areas but should be Automatic. Reference SD-
011 for additional guidance.

5. Cold Start Type: Automatic – Output 1 will energize when both inputs are in their active state and no faults
present on controller power up or mode change.

6. Channel A and B: Assigned safety inputs from each dual channel safety gate interlock switch device.
Note: Channel A and B may be assigned the same safety input when single channel safety devices are
used for PL c safety circuit applications.

7. Input Status: Tag name used to monitor the safety input point status providing the connections to the
safety gate interlock switch device.

8. Reset: Tag name used to provide the safety reset function. This input is used to energize Output 1 of the
DCS instruction when Channel A and B are both active for Manual restart type. This input is not used to
energize Output 1 for Automatic restart type; however, a tag still needs to be provided.

3.3.5 The DCS instruction(s) Output 1 (O1) operand shall be used in logic to enable the appropriate Safety Gate OK
tag(s) representing the area or zone protected by the safety gate interlock devices. These tags shall control
the CROUT instruction(s) or other safety signals to devices providing the safety gate safety function output
control.

Revision 09JA25 Page 36 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 26: Safety Gate Status

Guidance:

3.3.6 Applications may require different zones of safety gate safety functions. The safety logic for the different
zones shall be contained in the R02_SafetyGate routine, but be segmented using separate rungs, tag
naming, and rung commenting to clearly distinguish between the separate zones being controlled.

3.3.7 Configuration details for safety input modules are described in Annex B.

3.4 Light Curtain PSD (R03_LightCurtain Routine)

Requirements:

3.4.1 The LightCurtain routine shall include the logic that monitors light curtain PSD devices on the machine and
provides the appropriate safety function.

3.4.2 The Dual Channel Input Stop (DCS) certified safety instruction shall be used to monitor the safety inputs
from each light curtain PSD device.

Note: Multiple safety input devices wired in series to dual channel safety inputs require a separate contact
from each device to be wired to standard inputs for individual annunciation.

3.4.3 The safety input module status and each input point status shall be monitored for proper functionality. This
input status tag shall be programmed as the “Input Status” tag within the DCS instruction.

Figure 27: Light Curtain Input Point Status and DCS Instruction

Revision 09JA25 Page 37 of 76

Programmable Logic Controller
Application Specification SD-1032

3.4.4 The DCS instruction operands shall be configured as follows:

1. Safety Function: Light Curtain – This provides a meaningful description for how the instruction is being
used. This operand does not affect the behavior of the instruction.

2. Input Type: Equivalent – Active High, both input channels must be high (1) for the active state.
3. Discrepancy Time (msec): 500ms – The amount of time the input channels can be in an inconsistent state

from each other.
4. Restart Type: Manual or Automatic – This selection shall be Manual for all full body access safeguarded

areas where a person can completely pass through the detection zone. Either selection is allowed for
non-full body access areas but should be Automatic. Reference SD-011 for additional guidance.

5. Cold Start Type: Automatic – Output 1 will energize when both inputs are in their active state and no faults
present on controller power up or mode change.

6. Channel A and B: Assigned safety inputs from each dual channel light curtain PSD device.
7. Input Status: Tag name used to monitor the safety input point status providing the connections to the light

curtain PSD device.
8. Reset: Tag name used to provide the safety reset function. This input is used to energize Output 1 of the

DCS instruction when Channel A and B are both active for Manual restart type. This input is not used to
energize Output 1 for Automatic restart type; however, a tag still needs to be provided.

3.4.5 The DCS instruction(s) Output 1 (O1) operand shall be used in logic to enable the appropriate Light Curtain
OK tag(s) representing the area or zone protected by the light curtain PSD devices. These tags shall control
the CROUT instruction(s) or other safety signals to devices providing the light curtain safety function output
control.

Figure 28: Light Curtain Status

Guidance:

3.4.6 Applications may require different zones of light curtain safety functions. The safety logic for the different
zones shall be contained in the R03_LightCurtain routine, but be segmented using separate rungs, tag
naming, and rung commenting to clearly distinguish between the separate zones being controlled.

3.4.7 Configuration details for safety input modules are described in Annex B.

3.4.8 Example logic for a light curtain muting safety function is available in the R03_LightCurtain_MUTE routine of
the logic library file.

3.5 Area Scanner PSD (R04_AreaScanner Routine)

Requirements:

3.5.1 The AreaScanner routine shall include the logic that monitors area scanner PSD devices on the machine
and provides the appropriate safety function.

3.5.2 The Dual Channel Input Stop (DCS) certified safety instruction shall be used to monitor the safety inputs
from each area scanner PSD device.

Note: Multiple safety input devices wired in series to dual channel safety inputs require a separate contact
from each device to be wired to standard inputs for individual annunciation.

Revision 09JA25 Page 38 of 76

Programmable Logic Controller
Application Specification SD-1032

3.5.3 The safety input module status and each input point status shall be monitored for proper functionality. This
input status tag shall be programmed as the “Input Status” tag within the DCS instruction.

Figure 29: Area Scanner Input Point Status and DCS Instruction

3.5.4 The DCS instruction operands shall be configured as follows:

1. Safety Function: Area Scanner – This provides a meaningful description for how the instruction is being
used. This operand does not affect the behavior of the instruction.

2. Input Type: Equivalent – Active High, both input channels must be high (1) for the active state.
3. Discrepancy Time (msec): 500ms – The amount of time the input channels can be in an inconsistent state

from each other.
4. Restart Type: Manual or Automatic – This selection shall be Manual for all full body access safeguarded

areas where a person can completely pass through the detection zone. Either selection is allowed for
non-full body access areas but should be Automatic. Reference SD-011 for additional guidance.

5. Cold Start Type: Automatic – Output 1 will energize when both inputs are in their active state and no faults
present on controller power up or mode change.

6. Channel A and B: Assigned safety inputs from each dual channel area scanner PSD device.
7. Input Status: Tag name used to monitor the safety input point status providing the connections to the

area scanner PSD device.
8. Reset: Tag name used to provide the safety reset function. This input is used to energize Output 1 of the

DCS instruction when Channel A and B are both active for Manual restart type. This input is not used to
energize Output 1 for Automatic restart type; however, a tag still needs to be provided.

3.5.5 The DCS instruction(s) Output 1 (O1) operand shall be used in logic to enable the appropriate Area Scanner
OK tag(s) representing the area or zone protected by the area scanner PSD devices. These tags shall
control the CROUT instruction(s) or other safety signals to devices providing the area scanner safety
function output control.

Revision 09JA25 Page 39 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 30: Area Scanner Status

Guidance:

3.5.6 Applications may require different zones of area scanner safety functions. The safety logic for the different
zones shall be contained in the R04_AreaScanner routine, but be segmented using separate rungs, tag
naming, and rung commenting to clearly distinguish between the separate zones being controlled.

3.5.7 Configuration details for safety input modules are described in Annex B.

3.6 Two-Hand Control (R05_TwoHandControl Routine)

Requirements:

3.6.1 The TwoHandControl routine shall include the logic that monitors two-hand control devices on the machine
and provides the appropriate safety function.

3.6.2 The Two Hand Run Station Enhanced (THRSe) certified safety instruction shall be used to monitor the safety
inputs from each two-hand control device.

3.6.3 The safety input module status and each input point status shall be monitored for proper functionality. This
input status tag shall be programmed as the “Input Status” tag within the THRSe instruction.

Revision 09JA25 Page 40 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 31: Two-Hand Control Device Input Point Status and THRSe Instruction

3.6.4 The THRSe instruction operands shall be configured as follows:

1. Discrepancy Time (msec): 250ms – The amount of time that the instruction lets the normally-open and
normally-closed device contacts be inconsistent before generating a fault.

2. Enable: ON (1) – The tag in this operand should always be ON, enabling the instruction.
3. Disconnected: OFF (0) – The run station instruction is not disconnected, and Output 1 may be energized.
4. Right Button Normally Open: Assigned safety input for right two-hand control devices N.O. contact.
5. Right Button Normally Closed: Assigned safety input for right two-hand control devices N.C. contact.
6. Left Button Normally Open: Assigned safety input for left two-hand control devices N.O. contact.
7. Left Button Normally Closed: Assigned safety input for left two-hand control devices N.C. contact.
8. Input Status: Tag name used to monitor the safety input point status providing the connections to the

two-hand control devices.
9. Reset: Tag name used to provide the safety reset function. This input is used to clear an instruction or

circuit faults provided the fault condition is not present.

3.6.5 The THRSe instruction(s) Output 1 (O1) operand shall be used in logic to enable the appropriate Two-Hand
Control OK tag(s) representing the area or zone protected by the two-hand control devices. This tag shall
control the CROUT instruction(s) or other safety signals to devices providing the two-hand control device
safety function output control.

3.6.6 The associated hazardous motion CROUT Output 1 (O1) tag shall be used in the R03_Cycle routine to initiate
the "Cycle_CycleStartPulse" OTE.

Revision 09JA25 Page 41 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 32: Two-Hand Control Status

Guidance:

3.6.7 The Output 1 (O1) of the THRSe instruction is energized when the two hand control devices are activated
within 500 msec of each other and then as long as the devices are maintained.

3.6.8 To properly detect the two-hand device concurrency, the safety task period cannot exceed 40ms and the
input device's RPI setting cannot exceed 20ms.

3.6.9 The instruction provides an anti-tiedown function where if one of the two-hand devices are released the
Output 1 (O1) turns OFF and the other device is required to be released prior to turning Output 1 (O1) ON
again.

3.6.10 Configuration details for safety input modules are described in Annex B.

3.7 Safety Outputs (R10_SafeOutputs Routine)

Requirements:

3.7.1 The SafeOutputs routine shall include the logic that controls and monitors the redundant outputs providing
hazardous motion power or signals for specific safety functions.

3.7.2 The Configurable Redundant Output (CROUT) certified safety instruction shall be used to control and monitor
the safety outputs.

3.7.3 The safety output module status, each output and feedback input point status shall be monitored for proper
functionality. These status tags shall be programmed as “Output Status” and “Input Status” operands
within the CROUT instruction.

Figure 33: Safety Output and Feedback Input Point Status

Revision 09JA25 Page 42 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 34: Safety Output CROUT Instruction

3.7.4 The CROUT instruction operands shall be configured as follows:

1. Feedback Type: Negative – The feedback input point(s) will be ON when the instruction outputs are OFF.
2. Feedback Reaction Time: 500ms – The time the instruction waits for both feedback inputs to be ON.
3. Actuate: The tag that energizes or de-energizes the CROUT instructions Output 1 and 2.
4. Feedback 1 and 2: Tag name used to monitor the safety output 1 and 2 controlled hardware feedback.

These inputs shall reflect the state of output 1 and 2 based on the feedback type above.
5. Input Status: Tag name used to monitor the safety feedback input point status providing the connections

to the safe output feedback.
6. Output Status: Tag name used to monitor the safety output module and point status providing the

connections to the safety output device.
7. Reset: Tag name used to provide the safety reset function. This input is used to energize Output 1 of the

DCS instruction when Channel A and B are both active for Manual restart type. This input is not used to
energize Output 1 for Automatic restart type; however, a tag still needs to be provided.

3.7.5 The CROUT instruction(s) Output 1 (O1) and Output 2 (O2) operands shall be used in logic to control
appropriate safety outputs as required by the application and safety function.

Figure 35: Safe Output Control

Guidance:

3.7.6 Applications may require different zones of hazardous motions and safety functions. The different zones
shall be contained in the R10_SafeOutput routine, but be segmented using separate CROUT instructions and
logic, tag naming, and rung commenting to clearly distinguish between the separate zones being controlled.

3.7.7 Delayed off safety output functionality is typically required to provide a Category 1 controlled stop function.
Applications may require different zones of hazardous motions and safety functions.

Revision 09JA25 Page 43 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 36: Delayed Off Safe Output Control

3.7.8 Applications may require the logic modification of Feedback 1, Feedback 2, and the Input Status operands
depending on the final switching device used. Safety rated devices may not provide a feedback status, for
example: Kinetix servo drive hardwired STO signals and pneumatic Herion blocking valve wired directly
from safety outputs. The CROUT instruction constantly monitors the Feedback 1 and 2 operands and
requires them to reflect the state of the outputs based on Feedback Type and transition within the Feedback
Reaction Time.

3.8 Additional Safety Routines

Requirements:

3.8.1 Applications may require additional safety functions not detailed above that are provided in the logic
“library” section of the safety task. For example: R06_RobotDisable, R18_Robot_FANUC,
R20_SafeInterlock_SDxxxxx2 routines. These shall be used as required based on the application and all
other SD specifications detailing their use.

3.8.2 Applications may require additional safety function logic routines that are NOT currently provided in the
logic library files. All additional safety logic routines shall be developed consistent with the requirements
detailed above and follow device manufacturers requirements for proper implementation.

3.8.3 All additional safety routines shall achieve the required performance level (PL) for the safety function based
on the machines risk assessment (MRA). Reference SD-011 and SD-012 specifications for additional
guidance on safeguarding and safety circuit performance (PL) level requirements.

Revision 09JA25 Page 44 of 76

Programmable Logic Controller
Application Specification SD-1032

3.9 Safety (SafetyTask) Routines Required On All Machines

Requirements:

3.9.1 The safety routines provided in the Safety Program of
the Nexteer_Library file shall be used for all applications
(see Figure 37).

3.9.2 These required routines are to be programmed on all
equipment that include the safety function. If the
equipment does not include associated safety functions,
the routines should be deleted.

3.9.3 For multiple station equipment with multiple programs,
the routines provided in the Safety Program of the
Nexteer_Library file should be distributed between the
SafetyProgram and the station specific safety programs
based on the safety functions required at each station.

- Refer to Figure 38 for an example of routine
distribution within a multi-station or dial table
controller organizer.

Figure 37: Nexteer_Library Controller Organizer

Figure 38: Multiple Station Controller Organizer Views

Revision 09JA25 Page 45 of 76

Programmable Logic Controller
Application Specification SD-1032

4. Required Logic Design - Application Specific

Nexteer logic requirements that are associated with a routine are detailed in Section 2 above. The following topics
are additional application-specific requirements.

4.1 Light Curtain Interruption

Operator and machine safety is ensured by appropriately applied safety devices, safety logic, and
hardwired safety circuits. Therefore, the standard logic based on an interruption of the light curtain does
not relate to safety, but instead relates to part quality and properly processing the part since the logic needs
to consider that physical power has been removed from hazardous actuators and devices.

4.1.1 Interruption of a light curtain during the machine cycle shall cause an Immediate Stop fault. Typically, the
Light Curtain Blocked During Cycle fault is energized upon the first scan that the light curtain is not clear.

Figure 39: Light Curtain Interruption

4.1.1

4.1.2.1

4.1.2.2

Revision 09JA25 Page 46 of 76

Programmable Logic Controller
Application Specification SD-1032

4.1.2 A deviation that delays the fault, and allows the light curtain to be momentarily interrupted during a cycle,
shall meet all the following requirements:

1. The logic design shall ensure part quality and proper machine sequence. Design consideration needs to
be given to ensure that the light curtain may be momentarily interrupted only during those process steps
where the part will still be properly processed with hardware power momentarily removed.

To clarify: Most process steps that effect or work directly on the part will make a reject part if hardware
power is momentarily removed, and therefore light curtain interruption during these steps shall be
detected immediately and cause an immediate stop fault.

To clarify: To avoid nuisance stops and loss of production, momentary interruption of the light curtain
during initial part-positioning machine motions (such as part clamps and part shuttles) can be
considered for inclusion in any logic that delays the Light Curtain Blocked immediate stop fault.

2. The MIC contact and branch enabling the Fault_StopWhenLCBlocked output-energize instruction may be
removed or ignored with an AFI.

3. The Fault_LightCurtainBlockedDelay timer preset shall be set to 2000 or less (a maximum of 2 seconds).

4.2 Motor Starter Control

4.2.1 Motor start control logic shall be designed such that resetting of an overload device does not restart the
motor (see figure below).

1. For applications where a normally-open contact from the motor starter is wired to an input, a normally-
open (XIC) contact from this input shall be used in the seal-in branch of the motor starter’s output-
energize instruction.

2. For applications where the motor starter overload is wired to an input, a normally-open (XIC) contact from
this input shall be used as a condition to prohibit energizing the motor starter’s output-energize
instruction.

Figure 40: Example Motor Starter Logic

4.2.1 (2)

4.2.1 (1)

Revision 09JA25 Page 47 of 76

Programmable Logic Controller
Application Specification SD-1032

4.3 Shift Register / Indexing Logic

4.3.1 Data transfer in a shift register, whether stored in an array or a bit-register such as a DINT, shall be initiated
by a shift pulse conforming to the following requirements.

1. The shift pulse shall occur once per index cycle. Multiple shift pulses shall not occur because of sensor
contact bounce, programmable device power up/down, or any other unintended cause. Refer to the
R19_IndexData routine within the Library_Routine program of the Nexteer_Library file.

2. When index mechanisms are used, the shift pulse should occur when the indexing mechanism finishes
transferring parts from one station to another.

4.3.2 Logic shall be included to ensure the correctness of shift register part quality data; the shift register logic
shall prevent qualifying a Reject Part as a Good Part under the following conditions.

1. Logic shall prevent against accepting Good Part status based on the reloading of PLC memory (reloading
of old or stale data).

2. Logic shall also prevent against accepting Good Part status based on memory which can be invalid due to
an unknown index (such as occurs when a dial table is indexed while power is off).

Four approved methods of ensuring the correctness of shift register part quality data include:

- resetting the shift register data (classifying all parts as rejects) on PLC power-up (first scan logic), or

- use of a 10-turn encoder connected to a dial table indexer (to detect an index without power),
classifying all parts as rejects when powered-up out of the last known position, or

- dial table fixture identification (such as RFID or barcode), read at a minimum of one location, such that
the shift register (or array pointer) can be reliably established even under such conditions as clutch
overload or manual-index with power removed, or

- part identification (such as on-the-part RFID or barcode) read at load, tracked with all other shift
register part data, and read again at unload prior to unload. The part shall be classified as a Reject Part
if the part at unload is not the part that had been loaded to that pallet or fixture.

4.4 Pallet Release / Pallet Memory

4.4.1 Logic for part-quality data storage, on asynchronous assembly lines with data tables (or arrays) that use the
pallet number as the table-pointer, shall prevent part-quality data from being written to inaccurate locations
in the data table.

1. The logic shall prevent storing (or memory of) a pallet number(s) which can become inaccurate after the
non-controlled transfer of pallets (such as the pushing the solenoid override of a valve).

2. The logic shall reset the station’s part-quality memories (both within the station logic and within
conveyance pallet control logic) consistent with the Reset All Memories requirements within the Cycle
routine section of Section 2 above.

4.5 Indicator Lights

4.5.1 Logic controlling indicator lights is typically programmed in routines associated with the purpose of the
light.

4.5.2 Test Lights logic shall be provided for all operator indicator lights.

Note: Operator indicator lights include lights on the operator control station and multi-colored pilot lights
provided at manual load / unload locations.

4.5.3 Logic for the manual load /unload station multi-colored LED pilot light (refer to SD-004) shall be designed
based on the following criteria at a minimum.

Revision 09JA25 Page 48 of 76

Programmable Logic Controller
Application Specification SD-1032

1. “GREEN”: Solid Green shall indicate a Good Part. The light shall energize when the machine cycle has
completed and stay energized until any of the following conditions occur: either the part is unloaded, or
the machine is put into Manual Mode, or the machine is powered-down; may be used for additional
conditions as required.

Note: Flashing Green may indicate initial conditions are met and machine is ready for cycle initiation on
equipment using a wobble (whisker) stick for cycle initiation.

2. “RED”: Solid Red shall indicate a Reject Part; Flashing Red shall indicate the machine has stopped
because of a fault. When indicating a Reject Part the light shall remain energized until the reject part has
been handled appropriately.

Note: Flashing Red typically indicates an Immediate Stop fault. However, on continuous cycle machines
Flashing Red may indicate a Cycle Stop fault.

3. “YELLOW”: Solid Yellow shall indicate Machine-In-Cycle (refer to the Machine-In-Cycle section of this
specification); may be used for additional conditions as required.

4.5.4 When provided, logic for manual load /unload station multi-colored LED cycle initiation buttons (refer to SD-
004) shall illuminate “GREEN” based on the following conditions.

1. “ON” (flashing): The button light shall illuminate when initial conditions are met, and the machine is ready
for cycle initiation.

2. “OFF”: The button light shall turn off when initial conditions are not met, or machine cycle has been
initiated.

4.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIs)

This Multiple HMI section details the motion-control logic requirements for multi-station synchronous-transfer
systems with multiple HMIs, where machine motion can be initiated from more than one HMI.

Note: This Multiple HMI section does not apply to asynchronous transfer systems such as pallet-and-free conveyor
lines. This section also does not apply to HMI stations that have been included solely for remote display purposes.

4.6.1 Manual/Off/Auto selection is required on each HMI station that can initiate machine motion.

4.6.2 All station HMIs must have Auto selected to allow initiation of any automatic or manual motion on the
machine from the main control HMI. Manual and Off selections from station HMIs shall disable automatic
and manual mode selection at the main control HMI.

4.6.3 When Off is selected at a station, no motion for that station shall be permitted (whether main or local
initiated), and machine index or transfer shall not be permitted (whether main or local initiated).

4.7 HMI Requirements for Safety Controller Applications

4.7.1 All safety controller applications shall include logic to facilitate displaying and acknowledging the following
information on the Machine Support and Safety Status screen(s) per requirements detailed in SD-1020
specification.

1. Safety Application Locked Status: Logic shall provide indication if the safety application is locked or not.

2. Safety Signature Exists Status: Logic shall provide indication that a safety signature exists.

3. Safety Signature Date: Logic shall provide values for the date the safety signature was created.

4. Acknowledge Safety Application Change: Logic shall be provided to require a safety application change
acknowledgement from the HMI.

Standard logic providing this functionality are in the Nexteer logic library files and shall be used on all
machines with safety controllers.

Revision 09JA25 Page 49 of 76

Programmable Logic Controller
Application Specification SD-1032

A. Annex A - Machine Diagnostics Scheme and Hierarchy

General

Nexteer’s Production and Operations require machine diagnostics and display consistent between all
machines. Any condition that stops a cycle, or prohibits a cycle from starting, needs to be detected and
displayed for operations on the operator interface. Conditions which stop or prohibit a cycle can be relative to
the part, the machine, auxiliary devices, and the operator. Design consideration needs be given to failures
related to the part, failures related to the machine, failures related to auxiliary devices, and incorrect operator
action.

All machine diagnostics, from simple to complex, inherently use logical hierarchy for collecting and displaying
information. Nexteer specifications use the following terminology and hierarchy within its specifications,
guidelines and logic libraries.

Terminology & Hierarchy:

Faults:

Faults are machine and device conditions. Faults require operator intervention; faults require operator reset
(via a Fault Reset button) – so therefore logic for faults seals-in and captures the fault condition for machine
diagnostics and potentially for part diagnostics. The fault display object is programmed in a location on the
global common screen and placed in the same location on every HMI screen. The display text is stored in the
HMI, through an alarm list object, plus use of an alarm history screen (refer to SD-1020). Nexteer’s
specification require faults to be grouped into either an Immediate Stop or a Cycle Stop

Immediate Stop Faults:

Immediate Stop Faults are those machine conditions that require the machine logic to instantly stop part
processing, immediately stop the machine cycle, and/or immediately stop all machine motion.

Immediate stop faults can include part conditions that prohibit the part from being processed further. If the
part condition indicates that there is no value in further processing the part, then the part condition can be an
immediate stop fault. A reject part can be either an immediate stop fault or, more-typically, a cycle stop fault
depending on the machine’s reject handling.

Example Immediate Stop Faults: Light Curtain Blocked During the Cycle, Machine Cycle Overtime, sensor error
faults, motion overtime faults, and certain part-quality faults.

Cycle Stop Faults:

Cycle Stop Faults are those machine conditions that do not require the machine to instantly stop, therefore,
the logic allows the machine to finish processing the part, or finish the current cycle, and/or return the
machine to its normal start position.

Cycle stop faults can include part conditions that allow a part to be completely processed and return the
machine to its home position. Cycle stop faults can also include part quality faults that allow the machine to
return to the home position without further processing of the part. A reject part is typically a cycle stop fault,
although it can be an immediate stop fault, depending on the machine’s reject handling.

Example Cycle Stop Faults: Between-cycle back check faults, feed track low level, traceability PC Heartbeat
Timeout, and certain part-quality faults.

Revision 09JA25 Page 50 of 76

Programmable Logic Controller
Application Specification SD-1032

Machine Messages:

Machine messages (typically referred to just as “messages”) are machine and device conditions. Messages
are general machine operating conditions with less significant impact concerning the machine or the part and
are not considered faults. A message indicates a condition that should be corrected by operator intervention
such that subsequent nuisance machine cycle stop faults can be avoided. Messages are allowed to cycle
stop the machine, but they typical do not. The message display object is programmed in a location on the
global common screen and placed in every screen, typically separate from fault display such that messages
are displayed on every HMI screen. The display text is stored in the HMI through a multi-state indicator (refer
to SD-1020).

Messages should be displayed as long as the associated machine condition exists. The fault reset button or
switch is not required to clear messages. Messages often require operator intervention with the equipment
such that the message is cleared after operator intervention. Without operator intervention, the message
condition may lead to an additional condition which can cause a cycle stop fault.

Examples: Bowl Feeder Low Level - the message is associated with a need for the operator to add parts to the
bowl feeder. The Bowl Feeder Low Level message (and the logic displaying the message) will no longer be
displayed on the operator interface when the operator re-fills the bowl. However, ignoring the message may
lead to a Cycle Stop fault for No Parts in the feeder track, which would require the operator to reset the fault
display. Messages such as “PLC Battery Low”, “Coolant Level Low”, “Barrel Heat Zone Not at Temperature”,
and “Bowl Feeder Low” are additional examples.

Machine Status and Part Status:

Machine Status and Part Status conditions have a lower hierarchy for display. There are several fixed,
standard, basic, and status conditions displayed in two dedicated multi-state indicators on Nexteer’s
Automatic HMI screen. The logic enabling these status displays is already programmed in the logic and HMI
libraries consistent with the expectations for nearly all machines. The machine status and part status logic
typically do not need to be modified by the OEM.

Operator Prompts:

Operator Prompts (typically referred to as just “prompts”) are part and operator-related conditions with less
significant impact than faults or messages. Prompts are based on operator interaction with the part being
processed. Prompts indicate a condition for operator intervention such that subsequent nuisance machine
faults can be avoided. Prompt conditions are allowed to cycle stop the machine, but typically do not, although
the condition typically does prohibit a cycle from initiating. Prompts are displayed in a dedicated multistate
indicator on the Automatic screen(s). Prompts should be displayed as long as the condition exists. A reset is
not required to clear prompts; they are cleared after operator intervention. Ignoring the prompt may lead to an
additional condition which can cause a cycle stop fault.

Prompts are application specific. Fully-automatic machines may require no prompts, while operator-based
hand-build assembly stations may require many prompts.

Example Prompt: Use Hand-Tool to Position Snap-Ring. The operator must use the hand-tool to properly pre-
position the snap-ring on the shaft prior to cycle. If the operator attempts to cycle start the machine without
correctly pre-assembling the snap-ring, a machine fault will occur.

Revision 09JA25 Page 51 of 76

Programmable Logic Controller
Application Specification SD-1032

B. Annex B - Controller: Properties, Organizer, Structure, Names, and Instructions

GENERAL

B.1 The logic design shall be created using the Ladder Diagram language type.

a. Sequential Function Chart and Function Block Diagram shall not be used.

b. The use of Structured Text requires Nexteer Controls deviation approval prior to the start of logic design.
Structured Text shall not be used for basic machine control logic that is used for machine support, such
as cycle, sequence, motion and outputs, part quality, and machine diagnostics. Note: A deviation can and
may be granted for Structured Text logic that Nexteer Controls has determined will not need to be altered
by plant support personnel, nor used for machine support. Two examples where Structured Text can be
the appropriate language type include (1) logic to accomplish sophisticated calculations, or (2) logic
provided by the device manufacturer that is not modified for the application).

B.2 The Master Control Reset (MCR) instruction shall not be used.

B.3 Output Latch instructions shall not be used in motion outputs.

B.4 AOIs may be used when provided by the device manufacturer. AOIs should be programmed in ladder logic
format.

B.5 Rung comments shall be included to clarify the purpose or design intent of complex logic that is not easily
understood. Examples of complex logic can include math operations, data manipulation, analog signal
conversion, and communication to auxiliary devices.

B.6 Forces or temporary logic used for bypassing logic shall be removed prior to MQ1 runoff of the equipment.
Proper logic operation shall be verified at MQ1.

B.7 Un-used logic, tag names, and descriptions shall be deleted prior to shipment of the machine. Exception:
Descriptions for un-used fault and message array bits should not be deleted.

Clarification: Un-used AOIs and UDTs are allowed to be deleted from the delivered machine logic.

Clarification: The OEM is expected to remove unused Nexteer Library routines. However, when a library
routine (such as an RFID routine, or traceability routine) has been used within the main program, the OEM is not
required to remove un-used portions of logic from that routine.

CONTROLLER PROPERTIES

B.8 The PLC name (the Name field under Controller Properties) shall include the asset tag number (SD number) of
the machine(s) (see figure below).

B.9 The EtherNet/IP Mode shall be configured for Linear/DLR communications.

B.10 The controller IP address, subnet mask, and gateway address shall be configured as specified by plant.

B.11 The controller Date and Time values shall be set to the current date and time.

B.12 Time synchronization shall only be enabled on motion control applications requiring CIP Sync. It shall be
disabled on all other applications.

Note: Time synchronization is required to be enabled for GuardLogix 5570 and Compact GuardLogix 5370
controllers, otherwise a major safety task fault will be generated upon attempts to go into Run mode.
GuardLogix 5580 and Compact GuardLogix 5380 series controllers do not require time synchronization.

B.13 The PLC project file name shall include the asset tag number (SD number) of the machine(s).

Note: The preferred naming convention also includes the date of the latest revision, for example:
SD123456_20241205a.ACD .

B.14 Security authority shall be set to “No Protection”.

Revision 09JA25 Page 52 of 76

Programmable Logic Controller
Application Specification SD-1032

B.15 A safety signature shall be generated, and the safety application shall be “Locked” prior to machine operation.

B.16 The safety application “Safety Unlock” shall be password protected. The password shall be the machine SD
number at time of delivery and allowed to be modified as determined by the receiving Nexteer facility.

Note: The preferred initial password format is SDxxxxxx, for example: SD123456.

B.17 Safety controllers shall have their safety I/O device replacement option set to “Configure Always”.

Note: The safety controller will attempt to configure a replacement safety I/O device automatically if the device
is in an out-of-box condition or the device has a Safety Network Number (SNN) that matches the configuration,
and the controller has configuration data for a compatible device at that network address.

B.18 The controller shall have at least 25% spare (unused) memory.

Note: This means 25% spare “Standard” capacity and 25% spare “Safety” capacity when using a safety
controller.

B.19 The controller Class 1 utilization shall not exceed 60%. Class 1 (Implicit) connections shall be used to
communicate with devices whenever possible. These connections are used for configured Ethernet I/O
modules and Produced/Consumed tag communications.

B.20 The controller Class 3 utilization shall not exceed 60%. Class 3 (Explicit) connections shall only be used on a
limited basis and only when required to meet the application requirements. These connections are used for
HMI communications, MSG instructions, and Nexteer Traceability Application communications.

CONTROLLER ORGANIZER: STRUCTURE AND NAMES

B.21 Nexteer logic files, showing the controller organizer structure and naming conventions as described within the
following sections, are located on www.nexteerdataexchange.com in the Toolkits, Templates and Forms
selection under Vendor Documents.

B.22 Names shall be consistent between the routine names, I/O configuration devices names, and tag names, as
described within the following sections and as shown in the tables at the end of this annex.

TASKS / PROGRAMS / ROUTINES

B.23 All standard programs and routines controlling a single station shall be organized under a continuous task
named MainTask. In addition to the continuous MainTask, a periodic task may be configured for a system
process requiring instrumentation inputs to be specifically read at a fixed rate.

B.24 All standard programs and routines controlling multiple stations such as an assembly shall be organized under
a periodic task named MainTask_XXms. All periodic task names should include “_XXms”, with XX indicating
the Period time configuration.

B.25 All safety programs and routines shall be organized under a single periodic task named SafetyTask.

B.26 A controller containing only periodic tasks, the period time configuration shall be adjusted to maintain
processor utilization at or less than 80%.

B.27 For a PLC controlling a single station, all routines shall be organized under programs named “MainProgram”
and “SafetyProgram”. These programs should be the only scheduled programs under MainTask and
SafetyTask (see figure below).

B.28 For a PLC controlling multiple stations such as an assembly line, the controller organizer structure should
include general-purpose Main and Safety Programs, as well as separate programs for each station under the
MainTask and SafetyTask. The programs for each station should be named as the station number. Each station
program should include routines consistent with the routines required from the Nexteer_Library MainProgram
and SafetyProgram (as noted elsewhere within this specification). The conveyance control logic should be
included either as routines under the Main program, or as routines under a program named Conveyor.

Revision 09JA25 Page 53 of 76

Programmable Logic Controller
Application Specification SD-1032

PLC Controlling a Single Station PLC Controlling Multiple Stations

Figure 41: Controller Organizer Routines #1

B.28

B.8

B.27

B.28

B.11

B.23

B.24

B.25

B.25

Revision 09JA25 Page 54 of 76

Programmable Logic Controller
Application Specification SD-1032

PLC Controlling Multiple Stations PLC Controlling Multiple Stations

Figure 42: Controller Organizer Routines #2

B.29 For all projects, the name for each routine shall represent the functions or machine tasks that are
accomplished by the logic within the routine.

B.30 The Controller Organizer view shall represent the PLC logic solve-order. Therefore, the routine names shall
include the prefix Rxx. The “xx” represents the logic solving order. Duplicate numbers are allowed such that
related routines are grouped; however duplicate numbers should include an alpha character suffix such that
the controller organizer view represents the PLC logic solve-order. The routines shall be called by logic within
the routine Main in this numerical order.

B.31 Additional routines are available for use as determined by the machine application, such as routines provided
in the Library_Routines program of the Nexteer_Library. Logic from the library, when used, shall be moved,
copied, or imported into the MainProgram, standard Station programs, SafetyProgram, and safety station
programs respectively. Routines shall be unconditionally called from the programs they are imported into; the
routines shall not be run from the Library_Routines program.

Note: Nexteer Library routines with a routine name appended with the text “_TOOLS” contain specific rungs of
logic that are intended to be copied or rung-imported into existing program routines of the same name.

B.32 Additional routines are allowed for applications not illustrated in the logic libraries. Additional routines should
follow the requirements and naming conventions of this specification.

B.28
B.28

Revision 09JA25 Page 55 of 76

Programmable Logic Controller
Application Specification SD-1032

I/O CONFIGURATION – SINGLE STATION

B.33 Connection Request Packet Interval (RPI) settings on
all devices should remain at their default setting and may be
adjusted based on the application.

B.34 Unicast Connection over EtherNet/IP shall be enabled
in all device connection configurations (for devices that
include this setting).

Note: This includes Produced and Consumed tag
configurations as well.

B.35 Devices in the I/O Configuration shall be named using
a combination of the device type, device model, device ID,
application use, and a numerical reference consistent with
the I/O and device tags (see Figure 43).

B.36 Each device shall have a unique name.

B.37 The device names should be a maximum of 20
characters in length. It is recommended that upper case
characters be used to start each word in the name.

B.38 Safety I/O: All safety I/O modules shall have a
lowercase “s” prefix, identifying this as a safety module.

B.39 Local I/O: The module name shall be the same as the
I/O tag that is mapped to/from the module data. (Refer the
Main routine specification section above).

B.40 Distributed I/O (when used): For Point I/O the AENT
Ethernet Adapter name shall be a character D for distributed
device plus a numerical value (starting at 1).

Note: The number may be omitted on small systems which
contain only one AENT module.

B.41 Distributed I/O (when used): Each I/O module name
shall be the same as the I/O tag that is mapped to/from the
module data. (Refer the Main routine specification section
above).

Note: This module name requirement applies to Point I/O
modules as well as on-machine input modules such as
Armor Blocks.

Figure 43: Controller Organization – I/O
Configuration for Single Station

B.42 Connection Request Packet Interval (RPI) settings on all safety input devices should remain at their default
setting. The RPI setting directly impacts the Connection Time Reaction Limit (CRTL) which is used in the safety
reaction time calculations.

Note: For typical applications, the default CRTL for input connections of 4 x RPI is usually sufficient.

B.38

B.41

B.35

B.39

Revision 09JA25 Page 56 of 76

Programmable Logic Controller
Application Specification SD-1032

B.43 Connection Request Packet Interval (RPI) settings on all safety output devices are fixed at the safety task
period and directly impact the CRTL which is used in the safety system reaction time calculations. If the
corresponding CRTL value is not satisfactory, you can adjust the safety task period.

Note: For typical applications, the default CRTL for output connections of 3 x RPI is usually sufficient.

Figure 44: Safety Input and Output RPI and CRTL

B.44 If the Maximum Observed Network Delay (ms), or age of safety packets exceeds the CRTL, the safety
connection times out, and the input and output data is placed in the safe state (OFF). In this case, it may be
necessary to increase the values from their defaults.

B.45 The System Reaction Time is the sum of all the components in the safety chain. System Reaction Time =
Sensor Reaction Time + Logix System Reaction Time + Actuator Reaction Time.

B.46 The Safety Task Reaction Time is the worst-case delay from any input change that is presented to the
controller until the output producer sets the processed output. Use this equation to determine the safety task
reaction time. Safety task reaction time = (safety task period + safety task watchdog) x 1.01.

Figure 45: Safety System Reaction Time

B.47 The System Reaction Time for applications using Produced and Consumed safety tags shall include the safety
task reaction time for both controllers involved and the consumed tag Safety Connection Reaction Time Limit.
The safety connection reaction time limit value is read from the Safety tab of the consumed tag connection.

B.48 Safety input Point Operation Type shall be configured as “Single”, for all modules where it is configurable. The
Dual Channel Stop (DCS) safety instruction in the SafetyTask will monitor the single or dual channel inputs.

Note: The 1756 and 5069 safety input modules have no point operation type, all inputs are treated as Single by
default.

B.49 Safety input Point Mode shall be configured as “Safety”. Input points that are not being used or are spare for
the application, a “Not Used” configuration is allowed.

Note: Pulse Test input mode is allowed but is only required for PL e performance level safety functions;
however, PL e hazards are not allowed on Nexteer equipment per SD-011.

B.44

Revision 09JA25 Page 57 of 76

Programmable Logic Controller
Application Specification SD-1032

B.50 Safety input Input Delay Time setting should remain at the default “0 ms”, unless used on applications where
the safeguard device signals may have rapid changes that need to be ignored.

Note: Configured input delay time shall be added to the input reaction time used in safe distance calculations.

Figure 46: Safety Input Point Operation Type

B.51 Safety output Point Operation Type may be configured as “Single” or “Dual” channel based on the safety
function being performed by the output(s). Single allows the outputs to turn on and off individually and to fault
independently. Dual configuration verifies that safety task logic operates both outputs simultaneously as a pair.
If one output has a module fault, the other output goes to the safe state.

B.52 Safety output Point Mode shall be configured as “Safety”. If the output points are not being used or are spare
for the application, a “Not Used” configuration is allowed.

Figure 47: Safety Output Point Operation Type

B.53 The mapping of Standard Tags to Safety Tags is not allowed. We do not allow standard tag data to be used
within the safety task routines unless absolutely required based on the application. Nexteer CSE prior approval
is required for all applications requiring this function.

Note: Standard tags are copied to their corresponding safety tags at the beginning of the safety task. The
copying process can increase the safety task scan time.

Figure 48: Safety Tag Mapping

B.48 B.50

B.40

B.52

B.51

Revision 09JA25 Page 58 of 76

Programmable Logic Controller
Application Specification SD-1032

 I/O CONFIGURATION - MULTISTATION

B.54 Devices in the I/O Configuration
shall be named and configured per the I/O
Configuration – Single Station section above,
plus the following additional requirements for
multiple station equipment (see Figure 49).

B.55 The unique configuration names for
each networked device should include the
station number in the configuration name. The
name for a device that is associated with
multiple stations may include the station
number closest to the device, or the name may
include all station numbers associated with the
device. The name for a device associated with
the main enclosure or main conveyor may
include the terms Main or Conv.

Note: The tables at the end of this annex shows
examples with clarification notes.

Note: The configuration name for a device
associated with multiple stations may include
an “ST” and a station number.

Figure 49: Controller Organization – I/O
Configuration for Multiple Station

B.40 & B.55

B.41 & B.55

Revision 09JA25 Page 59 of 76

Programmable Logic Controller
Application Specification SD-1032

LOGIX DESIGNER 5000 TAGS

TAG CONFIGURATION

B.56 All tags shall be defined as Controller scope. Exceptions: Program scope tags are allowed when a single PLC
controls multiple stations. Program scope tag usage shall be configured as a Local tag when used.

TAG NAMING

B.57 This section establishes a hierarchy for tag naming; the tables at the end of this annex show examples with
clarification notes.

B.58 Standard I/O tag names shall start with the character I or O for inputs or outputs respectively, then be built as
follows:

a. for distributed I/O only (such as Point I/O and on-machine devices) followed by additional text.

i. D and a unique device number, or ST and a station number for the associated station, or B and a
unique block number, or BNI and unique Balluff Network Interface module number, or MB and unique
IO-Link Master Block number, or M and a unique fluid power manifold number.

ii. followed by an underscore character.

b. followed by the slot number (does not apply to distributed on-machine devices).

c. for analog I/O only: followed by the text CH and the signal channel number.

Note: The additional text required on distributed I/O may be a combination of one or more device, block, and
station identification alpha-numeric characters. For the additional text required on distributed I/O, the number
may be omitted on small systems which contain only one distributed I/O device, block, module or manifold.

Note: Per SD-004, I/O conductors shall have the same identification as the I/O, including cables for analog
signals.

B.59 Non I/O tags with contents modified (set or enabled) within a routine shall be named based on the routine
name, an underscore, and the tag function (purpose or use within the routine).

Note: The logic libraries establish the required routine-name portion of the tag names that are associated with
the required routines. An abbreviation of the routine name may be used for tags associated with routines and
devices not specifically shown in the libraries.

B.60 Non I/O tags with contents modified by a device shall be named based on the device name, an underscore, and
the tag function (purpose or use from the device).

B.61 All safety I/O and non I/O safety tag names shall start with the lowercase “s” character and comply with tag
naming requirements detailed above.

B.62 Maximum overall tag name length should be 30 characters. It is recommended that upper case characters be
used to start each word in the name. The use of abbreviations should be minimized.

Revision 09JA25 Page 60 of 76

Programmable Logic Controller
Application Specification SD-1032

USER-DEFINED DATA TYPES (UDTs)

B.63 This section describes both the application of Nexteer-
provided UDTs and establishes requirements for OEM-
created UDTs.

B.64 Nexteer-provided UDTs have a property name prefixed
with either a “u_” or an “NX_” (see Figure 50).

a. UDTs that have a u_ prefix typically require
modification to match the application.

b. UDTs that have an NX_ prefix shall not be modified.
These UDTs also include a version suffix for
tracking.

B.65 Tag names shall follow a similar convention to the non-
I/O tag-naming section covered previously in this
specification.

Note: Tags created by UDT usage will have a format:
Tag_Name.Device_Member.

a. The Tag_Name shall be a unique name for each
use of the UDT, using the following naming
hierarchy:

b. Tags with contents modified (set or enabled) within
a routine shall be named based on the routine
name. Example UDT usage tag name:
Out_CloseClamp, with a complete tag and member
name Out_CloseClamp.Enable. Example UDT usage
tag name: CodeReaderHsg, with a complete tag
and member name CodeReaderHsg.CommActive.

c. Tags with contents modified by a non-PLC device
shall be named based on the device name. Example
UDT usage tag name: FANUC_DataIn, with a
complete tag and member name
FANUC_DataIn.TPENBL.

Note: Tag names are required to include a prefix based
on the routine in which the tag’s contents are modified.
It therefore follows that, in order for an OEM-created
UDT to be acceptable, each use of the UDT shall have
all member-modifying instructions, such as OTEs and
timers, set in one routine.

B.66 The Device_Member names shall be based on the
member’s control function (purpose or use).

B.67 All tags shall have detailed description consistent with
the Tag Descriptions section of this specification.

Figure 50: Library UDTs

B.71

B.64.a

B.64.b

Revision 09JA25 Page 61 of 76

Programmable Logic Controller
Application Specification SD-1032

B.68 The use of additional, OEM-created UDTs, requires Nexteer Controls deviation approval prior to the start of
logic design.

a. OEM-created UDTs shall not be created for logic routines used for safety, sequence, part quality, and
machine diagnostics (faults and messages).

b. OEM-created UDTs should not be created for logic routines used for mode and cycle.

c. OEM-created UDTs shall have a property name prefixed with the characters oem_name.

B.69 OEM-created UDTs, and OEM modification to Nexteer UDTs should keep UDT members grouped by data type to
save on controller memory usage.

Note: UDT memory is allocated in 4-byte (32-bit) increments, and every DINT, REAL, STRING, or sub-UDT
element start at the beginning of a 4-byte boundary. Elements of smaller data types, such as: BOOL, SINT, or
INT, start on the next byte boundary that matches its size.

B.70 OEM-created UDTs, and OEM modification to Nexteer UDTs shall include detailed descriptions for all UDT
members consistent with the Tag Descriptions section of this specification.

Note: Tag member descriptions may be appended to the base tag description using the pass-through display
feature under the controller properties project tab. Refer to tag description examples shown in the Tag
Descriptions section at the end of this annex.

B.71 UDTs are also allowed when device-created by third-party device applications (such as by use of AOIs or
AOPs). The device-created property name for these device-created UDTs should not be altered.

Revision December 16, 2024 Page 62 of 76

Programmable Logic Controller
Application Specification SD-1032

I/O CONFIGURATION, ROUTINE, AND TAG NAMING TABLES

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O
Configuration Tag Name Examples Device Explanation and Clarification Notes

sI1 sI1.0 Local Discrete Safety Input Module
Slot 1, Bit 0

I/O configuration name is consistent with the I/O device tag(s). Safety I/O
modules require a prefix “s”.

sO2 sO2.1 Local Discrete Safety Output Module
Slot 2, Bit 1

Most safety outputs will be energized within the SafeOutputs routine; however,
discrete safety outputs are NOT named by their associated routine. Naming by I/O
takes priority.

I3 I3.7 Local Discrete Standard Input Module
Slot 3, Bit 7

I/O configuration name is consistent with the I/O device tag(s).

O4 O4.15 Local Discrete Standard Output Module
Slot 4, Bit 15

Most standard outputs will be energized within the OutputMotions routine;
however, discrete outputs are NOT named by their associated routine. Naming by
I/O takes priority.

I5 I5Ch1 Local Analog Input Module
Slot 5, Channel 1

Although an analog input will be associated with the Analog routine, naming by
I/O takes priority. This signal’s cable number should be I5CH1.

sB1 sIB1.0 Distributed Safety Input Block
Block 1, Bit 0

I/O configuration name is consistent with the I/O device tag(s). Safety I/O modules
require a prefix “s”.

B2 IB2.8 Distributed Standard Input Block
Block 2, Bit 8

I/O configuration name is consistent with the I/O device tag(s).

ST70_B1 IST70_B1.7 Distributed Standard Input Block
Station 70, Block 1, Bit 7

I/O configuration name is consistent with the I/O device tag(s). This input device’s
wire number should be “ST70_IBK01.7”.

BNI2 IBNI2.4 IO-Link Master Block (Network Interface)
Module 2, Input 4

I/O configuration name is consistent with the I/O device tag(s).

Table 1: I/O Tag Consistency – Local and Distributed I/O

Revision December 16, 2024 Page 63 of 76

Programmable Logic Controller
Application Specification SD-1032

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O
Configuration Tag Name Examples Device Explanation and Clarification Notes

D1 Distributed Point I/O
AENT Module 1

Point I/O AENT Module number 1 either within a single station, or in the main
enclosure of a multi-station machine.

sID1_1 sID1_1.1 Point I/O Safety Input Module
AENT Module 1, Slot 1, Bit 1

I/O configuration name is consistent with the I/O device tag(s). Safety I/O modules
require a prefix “s”.

sOD1_2 sOD1_2.4 Point I/O Safety Input Module
AENT Module 1, Slot 2, Bit 4

I/O configuration name is consistent with the I/O device tag(s). Safety I/O modules
require a prefix “s”.

ID1_4 ID1_4.1 Point I/O Standard Input Module
AENT Module 1, Slot 4, Bit 1

I/O configuration name is consistent with the I/O device tag(s).

ST20 Distributed Point I/O
AENT Module ST20

Point I/O AENT Module associated with Station Number 20.

sIST20_1 sIST20_1.2 Point I/O Safety Input Module
AENT Module ST20, Slot 1, Bit 2

Station 20 (only) safety inputs.

IST20_2 IST20_2.5 Point I/O Standard Input Module
AENT Module ST20, Slot 2, Bit 5

Station 20 (only) standard inputs.

ST20_30 Distributed Point I/O
AENT Module ST20 & ST30

Point I/O AENT Module associated with Station Numbers 20 and 30, the I/O
Configuration name can include all Stations.

IST20_1 IST20_1.5 Point I/O Input Module
AENT Module ST20, Slot 1, Bit 5

Station 20 (only) standard inputs. The I/O Configuration name for the module is
allowed to be just the Station Number associated with the I/O connected.

IST30_3 IST30_3.5 Point I/O Input Module
AENT Module ST30, Slot 3, Bit 5

Station 30 (only) standard inputs. The I/O Configuration name for the module is
allowed to be just the Station Number associated with the I/O connected.

M2 OM2.1 Pneumatic Valve Manifold
Manifold 2, Output 1

I/O configuration name is consistent with the I/O device tag(s). Applies to fieldbus
(EtherNet/IP, IO-Link, etc..) valve manifolds.

Table 2: I/O Tag Consistency – Distributed I/O

Revision December 16, 2024 Page 64 of 76

Programmable Logic Controller
Application Specification SD-1032

Naming – Consistency Between I/O Configuration Device Names and Tags

Name – I/O
Configuration Tag Name Examples Device Explanation and Clarification Notes

DM262X CodeReaderRack_DM262CommActive Cognex Dataman 200 Series
Code Reader

Cognex Dataman Module 262X, associated with reading the rack code,
communication active OTE instruction programmed in the CodeReader_Rack
routine.

DM1155 CodeReaderRack_DM1155CommActive Cognex Dataman 200 Series
Code Reader

An example of a Cognex Dataman Model 262 that has a device number 1155
(appears on Sheet 11, Line 55), tag names based on device number are allowed
when used consistently throughout the project.

SR2000_Pinion CodeReaderPinion_SR2000Status Keyence SR 2000 Series
Code Reader

Keyence SR 2000 Series, associated with reading the pinion code, additional
naming required if multiple code readers exist on the machine.

SR2000_Sleeve CodeReaderSleeve_SR2000Status Keyence SR 2000 Series
Code Reader

Keyence SR 2000 Series, associated with reading the sleeve code, additional
naming required if multiple code readers exist on a machine.

K5500 Axis1_K5500Status Allen Bradley Kinetix 5500 Series
Servo Drive

AB Kinetix 5500 Series, associated with moving axis 1 on a machine.

FANUC FANUC_DataIn.DO.IN_T1 Fanuc R30iB Plus
Robot Controller

Fanuc R30iB Plus robot controller, associated with moving one robot on a
machine. The example tag name is part of our standard UDT.

Promess Press_CommActive Promess
Servo Drive

Promess servo drive, associated with moving a Promess system on a machine.

SD123456 Interlock_SD123456.CommActive CompactLogix 5380
Controller

CompactLogix controller configured in Ethernet I/O to communicate Produced
and Consumed tags between local PLC and this remote PLC.

Table 3: I/O Tag Consistency – Device Names and Tags

Revision December 16, 2024 Page 65 of 76

Programmable Logic Controller
Application Specification SD-1032

Naming – Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

R00_Main Main_NoEstops The OTE instruction programmed in the Main routine indicating that no
emergency stop conditions exist.

R01_Mode Mode_AutoMode Automatic Mode Selected OTE instruction programmed in the Mode routine.

R03_Cycle Cycle_MIC Machine In Cycle (MIC) OTE instruction programmed in the Cycle routine.

R05_Sequence Seq_Step025PartQualityCheck1 The OTE instruction programmed in the Sequence routine that initiates the
first quality check, at step number 25 of the sequence.

R07_OutputMotions Out_ClearToRetractPress The OTE instruction programmed in the OutputMotions routine that
indicates the conditions are clear to retract the press.

R07_OutputMotions HMI_CloseClamp HMI A tag used in the R07_OtuputMotions routine, but set by the HMI, indicating
a command from the HMI to close the clamp.

R08_Fault_Control Fault_NoCycleStops The OTE instruction programmed in the Fault_Control routine that indicates
there are no cycle stop conditions. Note that there are multiple routines
with tag names called “Fault_.”

R08_Fault_CycleStop Fault_PartPresentBackcheck The OTE instruction programmed in the Fault_CycleStop routine that
maintains memory of the Part Present switch being OFF. Note that there are
multiple routines with tag names called “Fault_.”

R08_Fault_ImmedStop Fault_ImmedStop[0].1 Immediate Stop fault number 2; the OTE instruction programmed in the
Fault_ImmedStop routine. The tag’s description indicates the fault display
text. Note that there are multiple routines with ta names called “Faults_.”

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of the
UDT named UDT_BNI_Master_Faults_v2. In this example, the system has
only one master BNI and therefore the UDT predecessor name (BNI_Faults)
indicates no device number. The tag description for Port2_Connection
includes the text “I/O Link Port #2 (physically port #3) Device Not Connected
– Check Cable.”

Table 4: Routine and Tag Name Consistencies (Set 1)

Revision December 16, 2024 Page 66 of 76

Programmable Logic Controller
Application Specification SD-1032

Naming – Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of the
UDT named UDT_BNI_Master_Faults_v2. In this example, the system has
only one master BNI and therefore the UDT predecessor name (BNI_Faults)
indicates no device number. The tag description for Port2_Connection
includes the text “I/O Link Port #2 (physically port #3) Device Not Connected
– Check Cable.”

R91_HyperCyl Out_HypercylPowerTimer.DN The done bit for the HyperCyl Power Stroke Raise / Lower Motion Fault
Timer. The done bit is used in the Fault routine, however, the ta name
includes the routine name “Out” since the timer is to be moved from the
R91_HyperCyl routine and programmed in the OutputMotions routine.

R91_HyperCyl Fault_ImmedStop [3].11 Immediate Stop fault number 108, HyperCyl Approach Motion Overtime,
included in the library routine R91_HyperCyl, however, the logic is to be
moved to the Fault_ImmedStop routine. The tag’s description is to be
consistent with the fault display text. Note that there are multiple routines
with the tag names called “Fault_”.

R00_Main sMain_sI1ModuleOK A tag set in the SafetyProgram R00_Main routine. This tag is monitoring the
health status of the safety input module in slot #1.

R01_EmergencyStop sEStop_OK A tag set in the SafetyProgram R01_EmergencyStop routine. This tag is
controlled by the DCS instructions monitoring E-Stop devices.

R02_SafetyGate sST20SafetyGate_DCS A tag set in the Station 20 SafetyProgram R02_SafetyGate routine. This tag
is the main tag for the safety DCS instruction monitoring safeguard devices
enabled hazardous motions in specific zones.

R10_SafeOutputs sSafeOutput_MotionCROUT.O1 A tag set in the SafetyProgram R10_SafeOutputs routine. This tag is one of
the safety output tags from the CROUT instruction enabling hazardous
motion for a specific zone.

Table 5: Routine and Tag Name Consistencies (Set 2)

Revision December 16, 2024 Page 67 of 76

Programmable Logic Controller
Application Specification SD-1032

TAG DESCRIPTIONS

B.72 All tags shall have detailed descriptions. The descriptions shall not be a copy of the tag name. The descriptions
should use full English words. To clarify: Descriptions should include more detail than the tag name. The
purpose of the description is to provide additional information to clarify tag names that, due to length
constraints, are not easily understood. Therefore, abbreviations should also be avoided.

B.73 The descriptions should be 5 lines or less with a maximum of 20 characters for each line.

B.74 The descriptions for all I/O tags shall be consistent with the wording on the hardware drawings. Documentation
for any unused I/O tags shall be deleted or noted as spare prior to shipment of the equipment.

B.75 Example descriptions that provide clarification detail are listed below.

Tag Name Description

Axis1_AutoAllowMoveRetPos Axis-1 Auto Allow Move to Return Position

Analog_ToolingPosition Tooling Position Scaled Value (inches)

Quality_RejectRemoved Reject Part Removed from Nest

Out_AdvancePunch
(u_Motion tag)

Advance the Hydraulic Notch Punch

.Enable
(u_Motion member)

Conditions to Enable Motion

Out_AdvancePunch.Enable Advance the Hydraulic Notch Punch Conditions to Enable Motion

sI1_Status.2 Light Curtain Channel A Input Status OK

sSafeOutput_EnableMotion Enable Hazardous Motion On Machine

sMain_SafetyReset Safety Reset Falling Edge Pulse

Table 6: Tag Description Examples

Revision December 16, 2024 Page 68 of 76

Programmable Logic Controller
Application Specification SD-1032

C. Annex C – Complex or Special Sequence Considerations

C.1 General

Nexteer’s logic philosophies and requirements for basic machine sequence are detailed above within the
Sequence routine section of this specification.

The purpose of this annex is to explain how to incorporate several complex, special, or customized sequences
into the Nexteer format and philosophy. For all applications, the design of the sequence logic needs to provide
the Nexteer plant personnel with a quick understanding of how the machine processes the part.

Four variants of sequences are detailed in this annex:

 Variance in step-order, such as different sequences based on model selection
 Multiple simultaneous sequences, such as processes occurring at the same time within an over-

all machine sequence
 Machine that repeats processes
 Use of the Sequence routine for machines specifically designed for hand-assembly of parts

The routines related to special sequence applications typically include the Main and Sequence routines.

Requirements:

Simple variance in machine sequence can be accomplished within one sequence routine. However, for more
complex sequences as described within this annex, multiple sequence routines may be programmed.

Simple machine example: When running Model L and W it is required that two screws be tightened in the
order of screw 1 then 2, but for Model R these two screws are to be tightened in the order of screw 2 then 1.
This simple sequence variance may be accomplished with just a few logic contacts within the one sequence
routine.

The Main routine requirements section of this specification states that the Main routine shall include logic
that unconditionally calls (jumps to) all other routines. The routines shall be called in the same rung-order as is
visible in the controller organizer.

Revision December 16, 2024 Page 69 of 76

Programmable Logic Controller
Application Specification SD-1032

C.3 Variance in step-order:

For more complicated sequences, multiple sequence routines
may be programmed.

Machine example, the Cover Screw station on a Solder Line:
The station requires a differing number of screws for each
model cover, as well as a differing screw order. In this
example the station steps through its main sequence, and
then proceeds to the correct Model L, W, or R screw
sequence before returning to the main sequence routine to
complete the cycle.

When multiple sequence routines are programmed for a
single station, each sequence routine may include a
Reset_Sequence output-energize instruction.

Note: In this example Reset_Sequence output-energize
instruction from the Sequence_Main routine resets the steps
from all routines.

C.4 Multiple simultaneous sequences:

Use of multiple sequences is a convenient programming
method when multiple processes need to occur at the same
time, such as when multiple stations on a dial table all
process their respective part at the same time.

In the controller organizer shown in Figure C.4 to the left, the
dial table index sequence is controlled by the Turn Table
sequence. After index, the load and unload station sequence
is controlled by the Load_Unload routine, while
simultaneously the test station sequence is controlled by the
combined Test routine.

Multiple sequences may be programmed on an individual
station when multiple processes need to occur at the same
time.

When multiple sequence routines are programmed for a
single station, each sequence routine may include a
Reset_Sequence output-energize instruction.

Note: In this example a separate Reset_Sequence output-
energize instruction for each routine should be programmed
to reset just that routine’s steps from all routines.

Figure C.3: Multiple Model-Dependent
Sequence Routines

Figure C.4: Multiple Simultaneous
Sequence Routines

Revision December 16, 2024 Page 70 of 76

Programmable Logic Controller
Application Specification SD-1032

C.5 Repeat process steps:

Use of multiple sequence routines is also a convenient
programming method when a part process needs to repeat a
major portion of the machine sequence.

Typically, a station will step through the normal sequence of
advancing motions, but when a process needs to be
repeated, the logic should proceed to a separate sequence
routine that includes both steps to retract motions and steps
that then re-advance motions until reaching the position to
repeat a process (reaching the steps to be repeated in the
normal sequence routine).

Example: In the controller organizer shown in Figure C.5 to the
left, the test station’s typical sequence (Test) engages the
part and steps through the test process. After the test, if the
part is allowed to be re-tested, the logic proceeds to the
ReTest sequence which retracts the engage motion and
resets the Test sequence such that the normal Test sequence
is re-run. The Test sequence would again engage and test.

Note: In this example Reset_TestSequence output-energize
instruction has been programmed in the Sequence_Test
routine to reset all steps in both the Sequence_Test and
Sequence_ReTest routines, which includes resetting the
sequence when the ReTest sequence has retracted the
engage motion.

C.6 Hand-Assembly of parts:

From the Sequence routine section of this specification (item 2.5.9):

Operator tasks that are required to occur in a specific sequence shall be programmed within a sequence
routine.

The assembly sequence shall follow the correct assembly order.

Note: Nexteer’s manufacturing engineer purchasing the equipment details the required assembly sequence.

All associated sensors and error-proofing shall be monitored during the entire process step(s).

Implementation examples:

In the first example (shown on the following page Figure 51) refer to the Atlas Copco Torque Wrench
sequence starting after Step_025, note that during the Atlas Copco Torque Wrench sequence the L/RHD &
L/AWD Part Support and the W/RHD Part Support both must remain in the lowered (not raised) position during
the entire torque process, until the torque passes and Step_037 seals-in.

In the second example from the same machine (shown on the following page Figure 52), the complete Left
Side Oetiker Clamp sequence will reset if the Lift is raised (not lowered), per the logic initiated by I2.3.

Figure C.5: Multiple Sequence Routines –
Repeat Sequence

Revision December 16, 2024 Page 71 of 76

Programmable Logic Controller
Application Specification SD-1032

Figure 51: Torque Process Example (Support must remain lowered)

Figure 52: Oetiker Clamp Process Example (Lift must remain lowered)

Revision December 16, 2024 Page 72 of 76

Programmable Logic Controller
Application Specification SD-1032

D. Annex D - Cycle Pause - Pausing a Cycle

D.1 General

Pausing a cycle is not typical for Nexteer’s production processes. Typically, it is not appropriate to pause a
cycle (and then restart the cycle). Therefore, most machines should not include a Cycle Pause feature
because of the complex logic that would be needed to ensure part quality and proper machine sequence. The
logic would be complex when taking into account every possible incorrect or inadvertent machine or operator
action that could occur while the machine is paused.

Logic that includes the ability to pause and then restart a cycle adds a level of complication to the Nexteer
logic philosophies and formats established within this specification. Even so, the purpose of this Cycle Pause
annex is to explain how to incorporate an operator initiated Cycle Pause (through an HMI pushbutton Cycle
Pause) feature into the Nexteer format and philosophy, since the ability to pause a cycle is occasionally
allowed for specific applications.

D.2 Requirements

A Pause Cycle momentary push button shall be included on the HMI Automatic screen.

Example logic for a Cycle Pause feature is available within the Cycle_TOOLS and OutputMotion_TOOLS
routines of the Nexteer Library_Routines program. The Cycle routine will require additional rungs to break the
Machine In Cycle, provide a pause request pulse, specify conditions that will allow a cycle to remain paused,
and seal-in the paused state. The Immediate Stop fault routine will include a Maximum Paused Time fault if
the cycle has been paused for more than two minutes.

D.3 Application Specific

Logic shall be included in the OutputMotions routine as revisions to the Auto Allow rung for each motion.
Typically, a contact from the motion’s collision avoidance output-energize instruction (a), and a contact
indicating that the previous machine sequence motion has been completed (b), are required. The first motion
of the sequence does not require these contacts.

Figure 53: Auto Allow Collision Avoidance for Cycle Pause

Revision December 16, 2024 Page 73 of 76

Programmable Logic Controller
Application Specification SD-1032

The application specific detail that cannot be shown in an example includes the complex logic required to
ensure part quality and proper machine sequence. The most complex logic that shall be considered addresses
these two questions for each and every motion and process:

 Will the part process occur correctly if any motion that has already fully advanced be hand-forced out of
position while paused, and then be re-advanced by restarting a paused cycle?

 Will the part process occur correctly if any motion that has already fully advanced simply be de-
pressurized (such as via interruption of a light curtain) while paused, and then be re-pressurized by
restarting a paused cycle?

Revision December 16, 2024 Page 74 of 76

Programmable Logic Controller
Application Specification SD-1032

E. Annex E - Glossary

E.1 Abort Cycle: An operator-initiated command to
immediately stop the current machine cycle.

E.2 Auto allow: A Nexteer phrase referring to the
one output-energize instruction that provides a
common method of interfacing the auto mode
sequence logic into the standard solenoid
output control rung of logic. One Auto Allow
output-energize instruction is provided per
direction of motion; and one contact is used
from this output-energize instruction. Auto
Allow is enabled by commands from the
sequence logic.

E.3 Back Check: Back check, back checked, or
back checking, are terms or phrases that
originated from logic that “checked” that an
input was OFF (or went “back” to OFF after a
cycle) such that the input would then be
ensured to transition to ON during the cycle in
order classify a part as a Good Part. Nexteer’s
use of the term has evolved to be associated
with any and all logic that ensures the function
of inputs and input devices (including discrete,
analog, and communication-based).

E.4 Collision avoidance: A Nexteer phrase related
to logic included to prevent damage to the
tooling or part; logic that “avoids” a damaging
“collision.” Similar terms include clear to
move, motion interlocks, and motion
constraints.

E.5 Control Function in the Event of Failure: A term
referenced from international machine
standards such as IEC 60204-1. The term refers
to how the machine control system is designed
to detect, react, and function when a failure
occurs.

E.6 Debounce (sensor debounce): Bounce is a
common industry term for the tendency of a
contact in devices to generate multiple signals
as the contact closes or opens, including
potential multiple signals from the bounce of
machine mechanics; “debounce” is any logic
that ensures that only a single signal will be
acted upon for a single opening or closing of a
contact.

E.7 Error proofing: An automatic device or method
that either makes it impossible for an error to
occur or makes the error immediately obvious
once it has occurred.

E.8 Logic Library: The Nexteer HMI and PLC logic
files provided as examples of both (1) basic
format, and (2) methods of compliance to
Nexteer specifications.

E.9 MIC: A Nexteer acronym used for the term
Machine In Cycle.

E.10 OEM: An acronym used for the Original
Equipment Manufacturer; another term used
for the machine builder.

E.11 PSDI: An acronym for Presence Sensing
Device Initiation, referenced from international
machine standards such as ANSI. PSDI is the
machine control function for starting a
machine cycle based upon the loss of a signal
from a presence-sensing safety device (or the
absence of an operator within the safety
device presence-sensing envelope, safely
clear of the hazardous area).

E.12 Reset All Memories: The control function and
output-energize instruction that resets
memories affecting, storing, or otherwise
relating to part status and part quality.

E.13 Seal-in logic: A common phrase in ladder logic
referring to parallel contacts that keep an
output-energize instruction in the ON state
(“seal-in” the output). Although similar to the
function of an output-latch instruction, Nexteer
typical requires an output-energize instruction
with parallel contacts seal-in such that all the
logic controlling the state of the output can be
viewed within one rung of logic.

E.14 Unconditionally called: Logic that powers the
output command directly from the left-hand
power rail such that the command is executed
each logic scan.

E.15 Connection Reaction Time Limit (CRTL): The
maximum age of safety packets on the
associated connection.

E.16 Request Packet Interval (RPI): The interval in
which the input and output packets are placed
on the wire (network).

Revision December 16, 2024 Page 75 of 76

Programmable Logic Controller
Application Specification SD-1032

F. Annex F - References

F.1 IEC 60204-1: Electrical Equipment of Machinery
– Part 1: General Requirements

F.2 SD-000: Nexteer Automotive Machinery and
Equipment Specification

F.3 SD-004: Nexteer Automotive Electrical
Specification for Industrial Machinery
Addendum to IEC 60204-1

F.4 SD-007: Nexteer Automotive Approved
Components List

F.5 SD-010: Nexteer Automotive Standard
Equipment Specification

F.6 SD-011: Nexteer Automotive Specification for
Safety Circuits

F.7 SD-1020: Nexteer Automotive Human Machine
Interface Application Specification

F.8 SD-1033: Nexteer Automotive RFID Application
Specification

F.9 SD-1052: Machine Controls Traceability
Interface Studio 5000

F.10 SD-1053: Studio 5000 Serial Generation

F.11 SD-1054: Studio 5000 JFK Lot Tracking (For use
with Traceability Application v11.11.0 or newer
and PLC JFK Routine v2.1.2 or newer)

F.12 SD-1055: Studio 5000 Tool Life (For use with
Traceability Application v11.9.3 or newer and
PLC Tool Life Routine v2.0.0 or newer)

F.13 SD-1056: Machine Controls Traceability
Interface Siemens PLC (For use with
Traceability Application vll.9.0 or newer and
Siemens Logic v2.0.0 or newer)

F.14 SD-1058: Machine Controls Traceability
Interface LabVIEW TCP Adaptor

F.15 PLC_HMI_Library_Files_rev_date.zip: Nexteer
Automotive Logix Designer and FactoryTalk
View Studio files

NOTE: To obtain a copy of Nexteer Automotive
specifications and libraries visit our vendor
document website currently at
www.nexteerdataexchange.com . Copies of
any other referenced specification can be
purchased, typically from the originating
organization or at various industry
specification websites.

Revision December 16, 2024 Page 76 of 76

Programmable Logic Controller
Application Specification SD-1032

RECORD OF REVISIONS

Revision # Date Section Description

001 01JL04 All Original Issue

002 28AU08 All Major Revision

003 06NO09 All Company Name Updated

004 17DE10 All Major Revision based on updated tag naming convention &
RSLogix 5000

005 14JL14 All Major Revision based on Nexteer Central CSE 2014 BPI-2

006 21FE17 All Document Restructured and Rewritten

007 27AU21 Annex F Added New Traceability Specification references. Removed
obsoleted SD-1034 reference.

008 09JA25 All Safety Controller Additions and Proposed Updates

009

010

011

012

013

014

015

016

017

018

019

020

