nexieer

AUTOMOTI!VE

APDL Programmable Logic Controller
Application Specification

SD-2032

ISSUED July 14, 2025
REVISED

© 2025 Nexteer Automotive

All rights reserved.

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

This page intentionally blank.

Revision 14JU25 Page 2 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

1.

mmoow>»

Revision 14JU25

Table of Contents

SCOPE AN PUMPOSE. ..ttt ettt ettt ettt et e e bt e e e st eeanbe e e anbeee s
O S oo oL PP PPPRPRPP
1.2 PUurpose and ODJECLIVEccuviiiiiie it
1.3 Critical Principle - Control Functions in the Event of Failure............c.c.cocoooiiiicnn,

Requirements (associated roUtING NAIME)c.uveiiuiieiiieeiiiee e
2.1 Main Program Control (RO0_Main rOULINE)cevviriiiiieiiiiee e
2.2 Mode Selection (RO1_MO0de ROULINE)eeiiiiiiiiieiiiiiee e 10
2.3 Precondition and Initiate Machine Cycle (R03_Cycle Routing)...........cccccocveriivennnnen. 11
2.4 Signal Conditioning (RO4_Analog ROULINE).........cceeeiiiiiiiiieiiiiee e 15
2.5 Machine Sequence (RO5_Sequence ROULINE)c.eeevieiiiiiiieiiiiee e 16
2.6 Part Quality Logic (RO6_Quality ROULINE)ceiiueiiiiiiiiiiie i 20
2.7 Solenoid Control (RO7_OutputMotions ROULING)ccoviieiiiieiiiiee e 24
2.8 Machine Diagnostics — Display Control (multiple routings)cccceoveeiiieeniieennnn. 31
2.9 Machine Diagnostics — Conditions and Detection [0giC...........ccccevieriiieniiieeniieeee, 32
2.10 Routines Required On All MaChINES.........ccoiiiiiiiiiiiiie e 34

Required Logic Design - Application SPECITIC..........ccooiiiiiiiiiiiiiiicice e 36
3.1 Light Curtain INterruptioN........ccoviiiiiiiiieiie e 36
3.2 MOtOr Starter CONIOL........eeeiiiee et 37
3.3 Shift Register / INdeXiNg LOGICoeiuiiiiiiiieiiie ettt 38
3.4 Pallet Release / Pallet MEMOIYooiiuiiiiiiieiiiie e 39
3.5 INAICALOT LIGNTS ...t 39
3.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIS) 40

Annex A - Machine Diagnostics Scheme and Hierarchyccccoocoviiiiieniiiiciicieen 42

Annex B - Controller: Organizer, Structure, Names, and Instructionsccccccveevueenne 44

Annex C — Complex or Special Sequence ConSiderations.............cccvevverieerineenienineenneenns 57

Annex D - Cycle Pause - Pausing @ CYCIe.........ccuoiiiiiiiiiieiiiieee e 60

ANNEX E = GIOSSAIY ...t 62

ANNEX F = RETEIBNCESeeiiiiie ittt e s ne e 63

Page 3 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:

List of Figures

Deterministic Update Of INPULScouuiiiiiiiiiie e 9
Reset All Memories EXamPIes..........cooiiiiiiiiiiiic e 13
Reset String Memory EXamMPIecoouviiiiiiiiiiie e 13
Reset All Memories LOGIC RUNG........ccviiiiiiiiiic e 14
Sequence Structure - Preferred — Two Machine Tasks / Two Rungs...........ccccocuee. 16
Sequence Structure — Allowed — Two Machine Tasks / Two Instructions................. 17
Sequence Structure — NOT ALLOWED - Two Machine Tasks / One Instruction...17
RESEL SEQUENCE LOGIC. .. etieeiiiiieiiiee et ettt ettt 18
Examples of Minimum Collision Avoidance LOQIC..........ccccovvvieiiiieiiiiiee e, 24
Example Use Of Collision Avoidance LOGICcccvverrureriiieeiiiee e 25
Example Auto Allow Logic (Motion Towards the Work Position) 25
Example Auto Allow Logic (Motion Toward Home Position)............c.cccceevveennee. 25
Example Solenoid Control RUNG..........ocuviiiiiiiiiieiice e 26
RemMOVE SOIENOIA POWENcooiiiiiiiie e 27
Example Single Solenoid Motion Valve LOgIC.........cccovuiiiiiiiiiiiiieiiie e, 28
Example Motor Starter (Start/Stop) LOGIC......cccvveeiiiieiiiieiiiee e 30
Example Sequence-Controlled Motor Starter LOGIC........ccuvevvvveriiieniiiieiiieeiieens 30
Nexteer_Library Controller Organizer..........cccoooveeiiiieiiiee e 34
Multiple Station Controller Organizer VIBWSccccooeeiieiiieenieeiie e 35
Light Curtain INterrUPtIONcooviiiiiiieec s 36
Example MOtor STarter LOGICcoiviiiiieiiieiiieiee et 37
Controller Organizer ROULINES.oiiiiiiiiiiieiie et 45
Controller Organization — 1/0 Configuration for Single Station...............cccceecueee. 47
Controller Organization — 1/0 Configuration for Multiple Station Error!

Bookmark not defined.

FIQUIE 25: LIBrary UDTS ...ttt 49
Figure 26: Torque Process Example (Support must remain lowered).....Error! Bookmark not
defined.

Figure 27: Oetiker Clamp Process Example (Lift must remain lowered) Error! Bookmark not
defined.

Figure 28: Auto Allow Collision Avoidance for Cycle Pause...........ccccoovveiieiiiiiciicnen, 60
Revision 14JU25 Page 4 of 64

Proprietary

"E}ﬂegp APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Revision 14JU25 Page 5 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

List of Tables
Table 1: 1/O Tag Consistency — Local and Distributed 1/O...........ccccoveiiiiiiniieicec 51
Table 2: 1/0 Tag Consistency — Distributed 1/0..........cccoeiiiiiiiiiiie e 52
Table 3: 1/0 Tag Consistency — Code REAUENceiiuiiiiieiiiiiie e 53
Table 4: Routine and Tag Name ConsiStenCies (St 1)........cooivvriiiiiiiiieiiiiee e 54
Table 5: Routine and Tag Name ConSiStenCies (St 2)........coovviiiiiiiiiiieiiiiee e 55
Table 6: Tag DesCription EXaMPIES.........ccoiiiiiiiiieiie e 56
Revision 14JU25 Page 6 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

1. Scope and Purpose

1.1 Scope

1.1.1 This specification describes programmable logic controller (PLC) logic design functional
requirements and format for Nexteer Automotive AP DriveLine facilities. This
specification shall be used by the Original Equipment Manufacturers (OEM) in their
design of PLC systems.

1.1.2 This specification applies to the purchase of new equipment and control system rebuilds.
It should not be implied that any existing equipment is required to be retrofitted to
comply with this specification.

1.1.3 This specification references two associated PLC logic files:
Nexteer TIAxx_PLC_HMI_rev_date and Nexteer_TIAxx_Library. These Nexteer logic
files (collectively referred to as templates) reflect the requirements of this specification
(Nexteer Library); they provide additional logic routines for specific applications
(Nexteer Library); The PLC logic files are available at www.nexteerdataexchange.com.

1.1.4 Additional applications specific guidelines that include PLC logic-related topics (such as
HMI operator interface, RFID, or traceability) are also available at
www.nexteerdataexchange.com.

1.1.5 The use of the word “shall”” indicates requirements and the use of the word “should”
indicates recommendations. The use of the word “may” indicates permission or
allowance and the use of the word “can” indicates a possibility.

1.1.6 This specification is structured as follows.
1. Requirements and guidance are detailed within Section 2.
2. Additional application specific requirements are detailed in Section 3.

3. Nexteer’s machine diagnostic philosophy, scheme, and hierarchy are described in
Annex A. An understanding first of Annex A’s philosophies will aid in understanding
the machine diagnostics requirements of Section 2.

4. The PLC logic structure and organization is summarized in Annex B.

Revision 14JU25 Page 7 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

1.2 Purpose and Objective

1.2.1 The purpose of this specification is to provide Nexteer requirements and guidance to
Original Equipment Manufacturers (OEM) for use in their design of PLC logic.

1.2.2 The objective of this specification is to provide common, maintainable, and cost effective
controls systems that enhance both the productivity and ease-of-use of the systems, plus
ensure the quality of Nexteer products produced. The application of this specification will
result in common controls systems software that:

1. ensures the machine processes the part correctly. To correctly process the part, the
machine logic design needs to include significant consideration for the control functions
in the event of failure such that the machine is not capable of processing the part
incorrectly. Aspects of control functions in the event of failure are discussed in detail
throughout this specification.

2. provides ease of customer use. Ease of customer use relates to logic that provides plant
personnel a quick understanding as to how the machine processes the part, logic that
can be quickly used to troubleshoot failures, and logic that can be easily used to verify
part quality. The Nexteer templates provide common structure and naming conventions
for the purpose of improved plant production, independent of which OEM supplied the
equipment.

3. facilitates the OEM design and Nexteer logic approval process. Nexteer’s specifications
require logic/software approval prior to MQL1. Nexteer’s approval process, adherence to
this specification, and use of the templates, provides an opportunity for the OEM to
demonstrate compliance to the requirements.

1.3 Critical Principle - Control Functions in the Event of Failure

1.3.1 Control Functions in the Event of Failure: the controls systems software design shall
include appropriate measures such that failures within the electrical equipment do not
cause the system to incorrectly process the part, and failures within the electrical
equipment shall not cause the system to qualify a Reject Part as a Good Part. Appropriate
measures shall include detection of, and indication of, such failures.

To clarify: Nexteer specifications and templates use the terms ““Back check”, “Back
checking™, or ““Back checked™ to indicate the logic that takes appropriate measures to
protect against such failures.

Back checking is a phrase that Nexteer uses relating to logic that both verifies the proper
input device operation and also detects input failure.

Back checking verifies the operation (action) of the input device. Back checking also
verifies the operation (action) of the PLC input card electronics.

Back checking also verifies the operation (action) of communications, whether parallel
or serial, such that part process and quality is based upon up-to-date (actual and
current) data, not based upon stale data (retained, old, or previous-part data).

Failure detection (back checking) may either stop the machine immediately, or disallow
the start of the next cycle, depending on the application.

Revision 14JU25 Page 8 of 64

Proprietary

nexieer

APDL Programmable Logic Controller
Application Specification SD-2032

2. Requirements (associated routine name)

Nexteer’s functional requirements are described within this chapter. Each clause of this chapter
details a logic topic and typically indicates which Nexteer routine(s) is associated with that logic

topic.

The routines provided in the Main Program of the logic Nexteer_Library file shall be used for all
applications; programmed on all equipment even when the equipment does not include any logic
within the routine. Additional routines from the Nexteer_Library program are detailed elsewhere
within this specification. Note: The MultiStation example uses all of the required routines,
distributing them appropriately between the Main Program and the station programs.

Nexteer’s logic organization, structure, and naming conventions are described in Annex B.

2.1 Main Program Control (RO0_Main[OBXx] routine)

Requirements:

2.1.1 The routine named Main shall be assigned as OB (within the main program’s
configuration properties, and within the configurations properties for all station programs

212

for a multiple station system).

The Main routine shall include logic that controls the deterministic (once-per-scan)
update of discrete and analog 1/0O tags for all module and slot-based signals (module
data). Input tags shall be mapped from the module data; output tags shall be mapped to

the module data. The I/O tags shall be used throughout the logic.

Note: Aliasing does not accomplish deterministic, once-per-scan updates.

Note: Communications with auxiliary devices such as cameras and servos, when mapped
within a device-associated routine, are not required to be mapped in the Main routine.

MNetwork §: BUFFER INFUTS

¥ The buffering ensures that the /0 states are updated in a predictable fashion once per scan of the logic, and

MOVE
EM —
PHO O oum
"l01" N
MOVE
EN —
PHAD oum
103" M
Figure 1:

Deterministic Update of Inputs

MOVE
EN — —

ouTI ‘=

Fad

IN

MOVE
EN —— —_—

oun —""."4"
IN

2.1.3 Each program’s Main routine shall include logic that unconditionally calls (jumps to) all
other routines of the program. The routines shall be called in the same rung-order as is

visible in the controller organizer.

Revision 14JU25

Page 9 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Guidance:

2.1.4 The only additional logic that should be included in the Main routine is miscellaneous
logic, such as the logic shown within the templates’ Main routines.

2.1.5 The Main routine may include general logic for indicator lights.

2.1.6 The deterministic (once-per-scan) update of station 1/O tags on multiple station
equipment can be programmed within the controller’s Main program or within each
associated station’s Main program.

2.2 Mode Selection (R01_Mode Routine)
Requirements:

2.2.1 The Mode routine shall include all logic that controls the selection of modes.

2.2.2 The machine shall power up with no mode active. After selection, one mode, and only
one mode, shall be active. Note: Being in an E-Stop condition should not deactivate a
mode selection.

2.2.3 At a minimum, all machines shall include two modes — Manual and Automatic. Note:
Machine motion shall only be enabled when a mode is active.

1. Manual Mode - Manual mode allows individual motions to be commanded. Manual
mode is not a forced logical “step through the machine sequence”, but is a means for
operators and maintenance to exercise any individual motion. The system shall not be
allowed to switch to manual mode (from auto mode) while the machine is in cycle.

2. Automatic Mode - Automatic mode is the mode that allows normal machine cycles and
prohibits manual motions. Automatic mode does not initiate any machine motions.

Guidance:

2.2.4 Other operating modes may be included on the machine. However many additional
machine processes are typically subcategories of Manual mode or Automatic mode and
are not as such an additional type of mode. Refer to the Cycle routine section below for
examples of Return All and Calibration which are both a type of cycle — not a mode.

2.2.5 The requirements for PSDI, an additional type of cycle that is allowed for specific
applications, are detailed in SD-011.

2.2.6 For multiple station equipment with multiple programs, mode selection logic should be
programmed within both the Main program’s Mode routine and within each station’s
Mode routine.

Revision 14JU25 Page 10 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.3 Precondition and Initiate Machine Cycle (R03_Cycle Routine)

2.3.1

2.3.2

1.

Revision 14JU25

Requirements:

The Cycle routine shall include the logic that is a precondition to the machine sequence,
including logic that indicates initial conditions, indicates initial positions, controls the
initiation of Machine In Cycle (MIC), and controls the Return All (Homing) logic for
machine motions.

The Cycle routine shall include the following functions and output-energize instructions:

Cycle_ResetAllMemories — output-energize instruction that resets memories affecting,
storing, or otherwise relating to part status and part quality. Requirements are detailed
below.

Cycle_AllIReturned — output-energize instruction indicating that all motions are returned
or retracted to the typical home position, based on positional indication consisting of
XI10O contacts from each returned sensor input and returned position for analog sensors.

Note: For any actuator that is sensed with only one motion-direction sensor, and that
sensor is an advanced sensor, then an XIC contact from the advanced sensor input
shall be included in the Cycle_AllIReturned logic.

Cycle_MemoriesAreReset — output-energize instruction indicating that all memories
affecting, storing, or otherwise relating to part status and part quality have been reset or
nullified.

Cycle_lInitialConditions — output-energize instruction indicating the combination of
conditions required to allow the initiation of machine cycle.

Cycle_StationArmed — output-energize instruction, used for each station on an
asynchronous assembly line, indicating and allowing the station to go into cycle. Station
Armed shall be operator-initiated by an HMI pushbutton.

Note: Station Armed allows the machine in cycle (MIC); MIC is a separate
requirement detailed below. MIC for each station on an assembly line is typically
initiated upon Pallet Presence with a part ok to be worked on (but only when the
StationArmed is energized). Operator de-energizing StationArmed can be used to
hold a pallet from cycling until the station is, again, intentionally Armed.

Cycle_AllowCycleStart — output-energize instruction indicating combined returned,
initial, and other conditions required to allow machine cycle start or allow the machine
cycle to be restarted.

Note: Machine conditions such as the main air pressure or hydraulic oil temperature
can be programmed in the initial conditions above, here in the allow cycle start, or in
machine faults depending on the application.

Cycle_CycleStartPulse. The cycle start logic is application specific.

Cycle_AbortPulse. An HMI button-initiate pulse to abort the current machine cycle; the
abort cycle logic shall be included on all machines.

Page 11 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

9.

Cycle_MIC - output-energize instruction indicating and allowing machine in cycle with
requirements as detailed below.

10. Cycle_ReturnAll — output-energize instruction initiating and allowing return-to-home,

2.3.3

2.34

o o &~ w

2.35

or return to initial positions as detailed below.

Machine In Cycle (MIC) shall be the control function, and output-energize instruction,
that makes a machine capable of producing automatic (sequenced) motions. Motion shall
occur only when MIC is energized.

To clarify: MIC shall be the one output-energize instruction that enables sequenced
motions for the duration of the cycle. Auto mode shall not be used throughout the logic to
allow motions. Non-motion processes (such as reading an RFID tag or communicating
with traceability) may be initiated prior to, and/or independent of, MIC.

Note: On an asynchronous assembly line MIC is typically not required to produce
conveyance and non-hazardous pallet control motions.

Note: The Nexteer_Library includes multiple MIC output-energize instructions; all but
one output-energize instruction shall be removed from the logic.

The machine shall be allowed to enter into cycle (MIC shall energize) only when all of
the following conditions are met:

Automatic mode is selected.

All motions and devices are in their initial state (typically, indicated by all of the
returned sensors being ON).

No faults are present on the machine.

All safety devices are in the “safe” condition.

A new part has been loaded or has entered into the machines.

The station is Armed (for stations on an asynchronous assembly line).

Machine cycle shall be initiated by the operator. On single cycle machines, machine
cycle shall be initiated by operator actuation of a hardwired device(s). On continuous
cycle machines, machine cycle should be initiated by an HMI pushbutton. Exception: for
each station on an asynchronous assembly line, Station Armed shall be operator-initiated
by an HMI pushbutton; machine cycle shall be initiated upon the presence of a pallet and
the part is ok to be worked on.

Note: Machine motion shall not occur based on mode selection.

1. Single cycle machines execute one complete cycle for each initiation by the operator.

2. Continuous cycle machines execute repetitive cycles until halted by operator action or a
fault condition. The first cycle shall be initiated by the operator.

3. A Cycle Stop pushbutton (either hardwired or on the HMI) shall be provided on
continuous cycle machines. When the Cycle Stop pushbutton is pressed the machine is
allowed to finish processing the part, return the machine to its normal starting position,
and then MIC is de-energized.

Revision 14JU25 Page 12 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

4. Logic controlled by a hardwired cycle start device shall include a one-shot to verify that
a failure of the device ON does not cause consecutive cycles to occur.

2.3.6 Reset All Memories shall be the control function, and output-energize instruction, that
resets memories affecting, storing, or otherwise relating to part status and part quality.

To clarify: Memories include all data types (such as DINTs and STRINGS), as well as
BOOL tags that have been sealed-in.

To clarify: Part status and part quality memories include Good Part, Reject Part, part
test results, and any part data storage from the previous cycle. Part status and part
quality memories also include previous cycle data from a pallet on pallet transfer
systems, and shift registers on other part-indexed systems.

o MNetwork 1: ResetAll Memaries

*D03_Cycle® Reset
AllMernories MOVE

N N —
0.0 — N "D06_Quality”.
i QUTE Result_MaxLoad

MOVE
EN — —_—

00—IN "D06_GQuality”.
s QUTI Result_EndPos

Figure 2 Reset All Memories Examples

To clarify: Resetting STRING quality memories is accomplished by filling the string tag
with null characters (ACSII $00) in the data, but is not accomplished by merely resetting
the string length to zero.

"DO03_Cycle” Reset
Alllernaries 5 MOVE

| | EN — ENO ——
"Empty”.5tring — IN "DO6_Quality.

ouT — Result_String

Figure 3: Reset String Memory Example

2.3.7 Logic to initiate Reset All Memories is application specific. At a minimum, Reset All
Memories shall be initiated upon power-up and upon removal of the part (see Figure 4
below).

Revision 14JU25 Page 13 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

To clarify: Removal of the part includes the release of a pallet on conveyor lines, or the
initiation of index (shift pulse) on dial tables and indexing machines.

To clarify: Removal of the part includes interruption of a light curtain on operator
unload machines that do not include Part Presence sensing. (It shall be presumed that
the part has been removed).

To clarify: On an automatic part-transfer system that does not include Part Presence
sensing at fixtures, and mechanically allows the part to be removed from the fixture,
removal of the part includes interruption of an interlocked safety gate. (It shall be
presumed that the part has been removed).

"DO0_Main®. "D03_Cycle” Reset
PowerOn.Q AllMemories
P} { }
"D0O3_Cycle”.
ONS[19]
Part Present
e nge e
Inl
1N}
"D0O3_Cycle”.

ON5[20]

Light Curtain Clear Always Off
fRrETrET “D0O0_Main®.OFF
Inl] |
1N} 11
"D0O3_Cycle”.
ONS[21]

“Pallet”.Pallet Always Off
PresentDebounce “"DOO_Main®.OFF

InL] |
1N} 11
"DO3_Cycle”.
ONs[22]

off
“Index" ShiftPulse "DO0_Main® . OFF
] |] |
1T 1T

Perimeter Safety
Guard Door
Closed Always Off
2t rst "DO0_Main®".OFF

Inl 11

1N} 11
"D0O3_Cycle”™.

ON5[23]

Figure 4: Reset All Memories Logic Rung

2.3.8 The Return All output-energize instruction shall only be enabled when a mode is active.

1. The Return All output-energize instruction can be enabled in Manual and Automatic
mode, however, the Return All output-energize instruction shall not be enabled when
Machine In Cycle is active.

2. When in Manual mode the Return All output-energize instruction shall only be enabled
when Return All pushbutton input remains enabled.

3. When in Automatic mode, the Return All output-energize instruction may be enabled
through one of two methods:

Revision 14JU25 Page 14 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

a. when the Return All pushbutton input remains enabled, or

b. asan automatic or sequenced Return All Cycle (initiated by momentarily pressing
the Return All pushbutton).

4. Logic controlled by a hardwired Return All pushbutton shall include a one-shot or pulse
to verify that a failure of the pushbutton or input does not cause machine motion.

2.3.9 Additionally, special-purpose machine cycles such as a Calibration Cycle, shall only be
enabled when in automatic mode.

Guidance:
2.3.10 The Cycle routine may include logic for cycle-related indicator lights.

2.3.11 The retentive CycleTime timer provided for HMI display may be programmed in the
Cycle routine or an HMI routine.

2.3.12 Logic to verify operator tasks such as part pre-assembly may be programmed within the
Cycle routine or within the Sequence routine. However, operator tasks that are required
to occur in a specific sequence or specific order shall be programmed within a sequence
routine. Refer to the Machine Sequence details below.

2.4 Signal Conditioning (R04_Analog Routine)

Requirements:

2.4.1 Analog signals shall be verified to move from a “reject” value to a “within-limits” value.
The signal shall be verified to have returned to the reject value or range (typically to a
known initial position) as part of initial conditions in order to allow the start of the next
cycle.

To clarify: The logic shall detect and prevent a common failure from classifying the part
as a Good Part, such as a broken wire that allows a signal to drift into the good part
range.

Guidance:

2.4.2 The analog routine should include the logic that controls the scaling and calculating of all
analog and similar signals.

2.4.3 The analog routine may include the logic to compare the signals to limits, including the
back check logic.

Revision 14JU25 Page 15 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.5 Machine Sequence (R05_Sequence Routine)
Requirements:

2.5.1 The Sequence routine shall include all of the logic that steps through the machine cycle.
The machine sequence includes stepping through all sequenced motions, stepping
through the machine processes, and initiating each process-based action. Note: Examples
of process-based action steps include initiating a quality check, or initiating a
communication.

To clarify: All sequence control logic shall be in the sequence routine. As an example:
The logic for raising a cylinder and then engaging a rod-lock shall include two separate
sequence steps programmed within the sequence routine — the rod-lock shall not be
controlled solely by the cylinder controlling sequence step plus time-delay logic located
within the OutputMotions routine.

2.5.2 The Sequence routine shall include an output-energize instruction for each sequence-
driven task.

To clarify: Each sequence-driven task includes: each machine function, each step, each
process, and each command originated from the sequence. Each shall have an individual
output-energize instruction in the Sequence routine. One output-energize instruction shall
not initiate more than one machine task. Two output-energize instructions are required
even when identical machine conditions initiate each task.

As an example: The example process requires that the same conditions both Step202 and
raise Step203. The sequence routine includes a separate output-energize instruction for
both Step202 and Step203 (see Figure 5, 6, and 7 as follows).

MachineInCycle "Do6_Quality™. "D0O5_Seq”. "D05_Seq”.Reset "D05_Seq”.
"D03_Cycle® MIC GoodPart Step201 Sequence Step202
1 |] | 1 1 |
11 11T 1T |/= : :
"DOs_sSeq”.
Step202
] 1
LI
MachineInCycle "Do6_Quality™. "DO5_Seq”. "DO5_Seq”.Reset "D05_Seq”.
"D03_Cycle” MIC GoodPart Step201 Sequence Step203
1 1] | 1 1]
1T 1T 1T /1 { }
"D0s_Seq”.
Step203
] 1
LI

Figure 5: Sequence Structure - Preferred — Two Machine Tasks / Two Rungs

Revision 14JU25 Page 16 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

ARURTEORVEORTIRVEE Application Specification SD-2032
MachineinCycle "Do6_Quality”. "D05_Seq”. *D05_Seq” Reset "DO5_Seq”.
"DO3_Cycle®.MIC GoodFPart Step201 Sequence Step202
l | 1 | 1
: I | | 1 :J/: : :
*D05_Seq" *D0O5_sSeq"
Step202 Step203
| | —

Figure 6: Sequence Structure — Allowed — Two Machine Tasks / Two Instructions

"D05_Seq".
MachineinCycle *Do6_Quality™. "D05_Seq”. *D05_Seq”.Reset Step202And
"D03_Cycle” MIC GoodPart Step201 Sequence Step203
] | 1 1] | [
1T 1 T 1T 1/1 : :
"D05_Seq”.
Step202And
Step203

Figure 7: Sequence Structure — NOT ALLOWED - Two Machine Tasks / One Instruction

2.5.3

254

The Sequence routine shall include only sequence and process steps.

To clarify: Sequence logic includes the output-energize instructions for process steps
such as initiating data monitoring, initiating sending traceability data, or initiating
quality limit checks. However, the logic that performs the quality limit checks is to be
programmed within the Quality routine - not within the sequence routine.

Each sequence-driven task shall be verified to have been completed within the sequence
routine.

To clarify: Each output-energize instruction within the sequence routine can be
considered as an ““output” from the sequence routine to another routine. Similarly then,
each contact or signal from other routines (or input devices) into the sequence routine
can be considered as a “completed” input to the sequence from the other routines.
Therefore the sequence routine logic needs to verify that each output from the sequence
routine receives a completed input into the sequence.

As an example: When an RFID write is initiated by the sequence, a write-completed
contact from the RFID routine must be used within the sequence routine to ensure a
properly cycled part.

Revision 14JU25 Page 17 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.5.5

2.5.6

Each sequence step rung shall include a normally-opened (XIC) contact from Machine In
Cycle MIC. The first automatic sequence step is nearly always initiated only by MIC.
Exception: Logic included in the sequence routine that verifies operator tasks such as part
pre-assembly, and are not required to occur in a specific sequence, typically should not
include the MIC contact.

The Sequence routine shall include a reset sequence output-energize instruction named
“Seq_ResetSequence”. The reset sequence output-energize instruction shall be the first
solved rung within the Sequence routine (for solve-order reasons). The reset sequence
output-energize instruction shall have a normally-closed (XIO) contact included in each
sequence step rung, to reset the entire sequence. The ResetSequence rung shall be
structured as follows (see Figure 8 below):

MachineinCycle "D05_Seq.Reset
"D03_Cycle™.MIC Sequence
{n| { F—
"D05_Seq”.
ONS[D]

"DO5_Seq”.Cycle
Complete
] |
1 F

"D03_Cycle" Abort
Pulse
1}
11

"DO1_Mode”
ManualMode
] |
11

MachineinCycle "DO6_Quality” Always Off
"DO3_Cycle™ MIC RejectPart *DO0_Main® .OFF

Im L] L] |

1M | 1T 1T
"D05_Seq”.

ONS[1]

“WDB10.DBX0 3
"D08_Fault® No Abways Off
ImmediateStops "DO0_Main™.QFF

i1 { |

Figure 8: Reset Sequence Logic

257

2.5.8

The sequence shall be reset upon:

- loss of MIC.

- after cycle complete.

- the first scan after a cycle is aborted (an AbortPulse).
- selection of manual mode.

From the Nexteer_Library logic, branches that include an Always-Off instruction are
shown as optional and are dependent upon the application. The sequence can be required
to reset upon:

- paused cycle (loss of MIC) while a reject part is present.
- detection of an Immediate Stop fault.

Revision 14JU25 Page 18 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.5.9 Operator tasks (such as part pre-assembly) that are required to occur in a specific
sequence shall be programmed within a sequence routine(s).

1. The assembly sequence shall follow the correct assembly order.

Note: Nexteer’s manufacturing engineer purchasing the equipment details the
required assembly sequence.

2. All associated sensors and error-proofing shall be monitored during the entire process
step(s). Refer to the Hand Assembly of Parts portion of Annex C.

Guidance:
2.5.10 Logic in the sequence routine should be kept simple.

Note: Adherence to simple logic and format will assist the destination plant support
personnel to more-readily understand the machine process.

2.5.11 Refer to Annex C for application details relating to more-complex, special, multiple, or
customized sequence examples.

2.5.12 Step numbers should be in ascending, consecutive order. Gaps in the numbering scheme
are allowed (such as step numbering 10, 20, 30). Sequence steps that execute
simultaneously may have the same step number.

2.5.13 The sequence routine can include reject-control logic as detailed in the reject-handling
requirements of the Part Quality Logic section below.

2.5.14 The logic templates include common reset-sequence examples. Additional sequence reset
conditions that should be included in the sequence reset logic depend on each machine’s
application. Branches (from the Nexteer_Library logic) that include an Always-Off
instruction are shown as optional and may be removed when not implemented by the
application.

Revision 14JU25 Page 19 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.6 Part Quality Logic (R06_Quality Routine)
Requirements:

2.6.1 The Quality routine shall include all of the logic that determines the part quality, logically
indicates the part quality status, and controls operator reject-part handling (based on the
part quality status).

2.6.2 Part quality logic shall be designed to prevent qualifying a Reject Part as a Good Part.
2.6.3 The part quality logic shall reset Good Part status upon removal of the part.

Note: Use of a contact from the Reset All Memories as detailed in the Cycle routine
above meets this specification requirement.

1. Where no Part Present signal is provided, the part quality logic shall reset a Good Part
status upon change of mode.

2. Where no Part Present signal is provided at fixtures of an automatic part-transfer system
that mechanically allow the part to be removed, the part quality logic shall reset Good
Part status upon the opening of an interlocked safety gate for each fixture that can be
accessed. Note: On automatic part-transfer systems, solenoid-locking interlock switches
should be considered to minimize the number of rejected (scrapped) parts.

2.6.4 The part quality logic that interfaces with a part-quality-determining-device shall be
designed to verify the device is operating as required. Devices and interface signals
include sensors, auxiliary equipment (such as instrumentation), analog signals, and
communication signals.

Refer to the Control Functions in the Event of Failure items under the Critical Principle
section above.

2.6.5 The control system, including instrumentation and sensors, shall provide a PLC Good
Part input when the desirable component, dimension, or feature is detected.

1. The logic shall detect that the Good Part input transitions from OFF to ON, or from an
out-of-limit value to a within-limit value. Note: This input transition shall occur during
the part-process, not at power-up of the system.

2. The logic design shall give the highest priority to classifying a part as a Reject Part,
over classification as a Good Part.

To clarify: At the logic scan for part quality check, the logic shall check for a reject
first. As an example: If the instrumentation provides the PLC with both a Good Part
and a Reject Part input, at the part quality check scan the logic shall classify a part
as a Reject Part because the Reject Part input is ON. At the part quality check scan

the logic shall then only classify as a Good Part if not a Reject Part and if the Good
Part input transitions to ON. At the part quality check the logic shall also classify a

part as a Reject Part if neither input transitions ON.

Revision 14JU25 Page 20 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.6.6 Logic for part-quality data storage (the logic that stores or saves the part quality data into
tags for use by traceability, or onto RFID) shall be located in the Quality routine.

Note: The logic that transfers the status byte(s) to traceability or writes the RFID data
shall be in the appropriate traceability or RFID routines respectively.

2.6.7 Means shall be provided to confirm that reject parts are disposed of or handled properly.
Reject part status and data shall be written to traceability or to RFID, and the write-
complete verified, prior to the logic allowing any reject disposal, reject-handling, and
reject removal as detailed below.

2.6.8 The Reject Part Present output-energize instruction shall seal-in until the reject-handling
reset sequence is completed. The Reject Part Present output-energize instruction shall be
maintained during power loss (typically through use of an OTL).

2.6.9 When error proofing includes communication of part status (such as communication to
traceability or to on-the-part RFID) the logic shall require the following reject-handling:

1. The logic shall annunciate a rejected part is present.

2. The communication of reject part status shall be included in the machine sequence
logic.

3. The machine should (typically) stop processing the part upon a reject and return to the
home position.

4. The logic shall verify that the part status has been communicated to the traceability or
on-the-part RFID system.

5. Upon completion of the reject part communication, the Reject Part Present output-
energize instruction may be reset.

2.6.10 When error proofing includes hand-unload to a reject chute or bin, the logic shall require
the following reject-handling reset sequence:

1. The logic shall annunciate a rejected part is present and prohibit the machine from
cycling again until the acknowledgement process has been completed.

2. The machine should (typically) stop processing the part upon a reject. Note: Most
machine motions are allowed to return to the home position.

3. The reject part shall remain clamped, or, where no part clamp is provided, at least one
machine motion shall stay advanced to mechanically prevent the removal of the part.

4. The logic shall require the operator to put the machine in Manual mode and unclamp
the part (or retract the appropriate motion).

5. The logic shall verify that the part has been removed from the machine, which may be
accomplished by verifying that the part present sensor switches to an OFF state. If a part
present sensor does not exist, other means, such as a light curtain being broken, may be
used to indicate part removal.

Revision 14JU25 Page 21 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

6. The logic shall not permit the machine to be switched back into Automatic mode until
the reject part has been placed into the reject chute or bin. The correct operation of the
reject chute sensor shall be verified (such as logic requiring a transition from an OFF
state to an ON state).

7. Upon completion of the reject-handling reset sequence the Reject Part Present output-
energize instruction may be reset. The machine is then permitted to go into Automatic
mode.

2.6.11 For machines that include automatic unload of reject parts the logic shall meet the
following reject-handling reset sequence.

1. The part shall be placed in a reject chute or repair loop, depending on the application.

2. The reject chute sensor must transition from an OFF state to an ON state when the part
passes down the chute. The sensor shall transition back to an OFF state in order to
complete the acknowledgement process.

3. Upon completion of the reject-handling reset sequence the Reject Part Present output-
energize instruction may be reset and the machine may now be permitted to begin
another cycle.

Guidance:

2.6.12 Applications may require a part to be rejected when there is a loss of MIC. Depending on
the process, or depending on what point in the process the machine drops out of cycle, the
part may be required to be rejected even though a quality check may not have occurred.
Applications may require a part to be rejected if the cycle is interrupted after a particular
process step has been started but not completed. Examples include heat treating, welding,
and other processes.

2.6.13 Back check logic for part quality-related inputs including discrete, analog, or
communication values may be programmed in the Quality routine although they are
typically programmed in a fault routine.

2.6.14 Applications may require the part status to be classified as Part In Process (typically upon
cycle initiation) until classified as a Reject Part or Good Part.

2.6.15 Logic to communicate the part status to traceability or RFID is typically not programmed
in the Quality routine.

2.6.16 Logic for quality-related indicator lights may be programmed in the quality routine or in
an output-related routine.

Revision 14JU25 Page 22 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

This page intentionally blank.

Revision 14JU25 Page 23 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.7 Solenoid Control (R07_OutputMotions Routine)
Requirements:

2.7.1 The OutputMotions routine shall include the logic that controls all machine solenoid-
controlled motion.

1. Logic that controls machine solenoid motion includes collision avoidance, auto allow,
enable motion, dwell timers, fault motion timers, and the motion not clear HMI display
output-energize instructions as detailed within this solenoid control section.

2. The OutputMotions routine shall not include logic that coordinates the sequential
control of two or more related outputs. Sequence logic shall be in the Sequence routine.

2.7.2 Motion shall be prevented when selecting a mode, and motion shall be prevented when
switching between modes. A separate action by the operator (clearly identified as a
motion initiating action) is required in order for any motion to occur.

2.7.3 Logic for each motion shall include collision avoidance output-energize instruction(s).

Note: Collision avoidance may be one output-energize instruction per actuator, or two
output-energize instructions (one for each direction of an actuator).

Note: Other terms used for “collision avoidance” include ““clear to move™, “motion
interlocks,” or ““motion constraints.”

1. Motions shall have minimal collision avoidance logic. Collision avoidance shall only be
used to prevent damage to the equipment or to prevent damage to the part (see Figure 9

below).
Clear for Motion
D07 _Out” Lower
Slide Clear
I L
L
Y
Motion Has
Completed Clear for Motion
"DO7_Out" Retract "DO7_Out" Raise
Probe.Completed clide Clear
| 1 —d
11 LS
Figure 9: Examples of Minimum Collision Avoidance Logic

2. Collision avoidance logic shall be active in both manual and automatic modes.

Note: Collision avoidance includes a “Clear To” contact in all motion-initiation
branches of motion-control logic (see Figure 10 next page).

Revision 14JU25 Page 24 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Allow Auto (from Conditions to
Sequence) Clear for Motion Enable Motion
MachineinCycle "DO7_Out" Lower “DO7_Out".Lower “DO0_Main".NoE "DO7_Out" Lower
"DO3_Cycle™ MIC Slide AutoAllow slide Clear Stops Slide.Enable
1 1 1 |] | 1 | I
1T 1T 11 1T L
2.7.3(2)
HMIPE Raise Front Conditions to Lower Front
“DO1_Mode". “DO7_Out” Lower Tooling Slide Enable Motion Tooling 5lide
Manualhode slide.PE solenoid *DO7_Out" Raise solenoid
| | | | Qrrstrt Slide.Enable RS R
/1 /1 {}
Lower Front
Tooling Slide Front Tooling
Solenoid Slide Lowered
"QUTERTET - b
] | 1 |
11 LI |
Figure 10: Example Use Of Collision Avoidance Logic

2.7.4 Logic for each direction of motion shall include an auto allow output-energize
instruction. The auto allow logic should be kept simple per the following:

1. The auto allow for the motion towards the work position (moves away from the home
position) is typically enabled by a normally-open (XIC) contact from the motion-
initiating sequence step (a) and a normally-closed (X10) contact from the sequence step
that initiates the motion towards the home position (b) (see Figure 11 below).

274
2.7.4 (1-a) 2.7.4 (1-b) Allow Auto (from
"D05_Seq”. "D05_Seq”. Sequence)
Step050_Lower Step190_Raise "DO7_Out® Lower
clide clide slide. AutoAllow
| % ~)

L

Figure 11: Example Auto Allow Logic (Motion Towards the Work Position)

2. The auto allow for the motion that returns to the home position is typically enabled by a
normally-open (XIC) contact from the motion-initiating sequence step and a normally-
closed (XIO) contact from Cycle Complete (see Figure 12 below).

2.7.4(2) Allow Auto (from
"DOS_Seq”. Sequence)
Step190_Raise "D0S_Seq”.Cycle *DO7_Out".Raise
Slide Complete Slide. Autodllow
— - ()
Figure 12: Example Auto Allow Logic (Motion Toward Home Position)

3. Machine sequences that require a motion to be enabled multiple times within the
sequence, or requires enabling a motion at varying process steps dependent on such

conditions as model selection or part-reprocess, require additional contacts in each
motion’s auto allow logic.

Revision 14JU25 Page 25 of 64

Proprietary

nexieer

AUTOMOTIVE

APDL Programmable Logic Controller

Application Specification SD-2032

2.7.5 Each solenoid control rung shall be structured as follows (see Figure 13 below):

Allow Auto (from Conditions to
Sequence) Clear for Motion Enable Motion
MachinelnCycle "DO7_Out" Raise "DO7_Out".Raize "DO0_Main".NoE "DO7_Out" Raise
"DO3_Cycle”.MIC slide AutoAllow slide Clear Stops slide.Enable
275(1) N | | | | | | { }
HMI PB . Lower Front Conditions to Raise Front
'I\?EUJJE'\FG‘;‘Z;- .DD?S_IEL:;’.:EI;E TO:“II'IQ 5I_i:e . Enable h!otion TO:liII'Ig 5I.i:e
2.75 (2) | | — | o DEESS.;QLRJDI:H "QUUsUe
i/ i/ { }
"DO3_Cycle™.
ReturnAll
2.75(3) | |
Raise Front
Tooling Slide Front Tooling
solenoid Silide Raised
"QUrETret p e vy
2.7.5(4) | | | |
Figure 13: Example Solenoid Control Rung
1. The top branch of the solenoid control rung shall include MIC and the auto allow to

2.7.6

1.

2.1.7

1.

Revision 14JU25

initiate the output.

Note: If the output is required for multiple sequence steps during the cycle, these
multiple sequence conditions shall be programmed in the auto allow rung prior to the
solenoid-control rung.

The second branch of the solenoid control rung shall include the manual initiation of the
output.

The third branch of the solenoid control rung shall include the Return All initiation
logic (for return-direction motions).

The bottom branch of the solenoid control rung shall include the solenoid seal-in logic,
including a seal-in around the Clear To move contact.

Solenoids shall remain energized (seal-in) until the opposite motion is initiated.

Exception 1: A sequence step that needs to de-pressurize a cylinder by de-energizing an
output without energizing the opposite motion direction.

Exception 2: Certain hydraulic motion solenoids may require the solenoid to not seal-
in, since a continual energized solenoid can overheat the hydraulic fluid.

Solenoids shall remain energized (seal-in) based upon the actuation of the positional

sensor indicating completion of the associated motion.

Note: Solenoid seal-in is required for all motions; the exceptions listed below are

exceptions to the *““positional sensor” portion of this specification item.

Exception 1: A normally-closed (X10) contact from the opposing-direction positional
sensor should be used, indicating a start of the motion, when the positional sensor
indicating completion of the motion does not exist.

Page 26 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2. Exception 2: Positional sensor contacts shall not be used for solenoid seal-in when a
double-solenoid, detented valve is being controlled. Since a detented valve
mechanically seals-in when electrically energized, the logic should seal-in upon
command such that the logical-state of the output, and the electrical-state of the output,
are consistent with the actual mechanical condition of the valve.

2.7.8 Conditions that remove power to the output include logical E-Stop conditions that
remove logical-power when hardwired power has been removed from the solenoid. The
logical E-Stop contact also breaks the solenoid seal-in when the machine is powered
down (see Figure 14 below).

2.7.9 All outputs that initiate opposing motions shall be logically linked such that both motions
cannot be energized at the same time (see Figure 14 below).

Conditions to
Enable Motion
"DO0_Nain® Mok "DO7_Cut® Raise
Stops Slide.Enable
]l L I }
1T 1 T
2.7.8
Lower Front Conditions to Raise Front
Tooling Slide Enable Motion Tooling Slide
Solenoid *DO7_Out" Lower Solenoid
lQl_lSl,l3l S'IdEEI"IEb'E‘ lQl_lSl,lzl
V1 2.7.9 V1 ()
Figure 14: Remove Solenoid Power

2.7.10 A motion dwell timer for each position of motion shall be programmed in the rung
immediately following the solenoid control rung. Timer presets may be adjusted for
sensor debounce as needed.

Note: The Nexteer_Library dwell timers are initially preset to 0000 to indicate that
timers can be set as low as practicable based on the application, thus minimizing cycle
time.

Revision 14JU25 Page 27 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.7.11 Logic that controls single-solenoid motion valves shall include all rungs (collision
avoidance, auto allow, enable motion, dwell timers, fault motion timers, and motion not
clear HMI display output-energize instructions) for each motion direction, consistent
with logic controlling double-solenoid valves (see Figure 15 next page).

1. The branch controlling the solenoid output-energize instruction does not include a
normally-closed (XIO) contact driven by the opposite-direction output (since the
opposite-direction output does not exist).

2. The rung enabling the non-solenoid direction of motion contains the Out_Enable
output-energize instruction to logically link (disable) the solenoid.

3. The rung enabling the non-solenoid direction of motion does not contain seal-in logic.

Allow Auto (from Conditions to
Sequence) Clear for Motion Enable Motion
MachineinCycle "DO7_Qut".Open "DO7_Qut".Open "DO0_Main".MocE "DO7_Out".Open
"DO3_Cycle”.MIC Clamp.AutoAllow Clamp.Clear Staps Clarmp.Enable
11 11 11 1 | { }
11 11 11 11 1 f
. . . HMI ':ﬂ Conditions to
DO1_Made®. DO7_Out".Open Close Part Clamp Enable Motion Open Part Camp
Manualhode Clarnp.PB Solenoid *D07_Out" Close Solenoid
: I I I 2 7 11 1 Q5T ot Clarmp.Enable -
|
7110 i I/ { }
poz_cple”. 2.7.11 (3)
ReturnAll 2.7.11 (2)

Open Part Camp

Solenoid Part Clamp Closed
Q5 oo g
{ | 4

Figure 15: Example Single Solenoid Motion Valve Logic

Revision 14JU25 Page 28 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Guidance:

2.7.12 In addition to the motion dwell timers (provided for sensor debounce as required above),
process delay or process dwell timers may be programmed in the OutputMotion routine,
or they may be programmed within the Sequence routine.

2.7.13 Diagnostic logic, including motion fault timers, as shown in the templates, may be
programmed in rungs following the solenoid control rungs, or within the Immediate Stop

fault routine.

2.7.14 The auto allow output-energize instructions may be eliminated for machines that require
only minimal (or simple) auto allow logic meeting all of the following:

1. The machine has minimal motions

2. The auto allow logic for all motions includes only two sequence step contacts per
motion (consistent with item 2.7.4 above), and

3. All auto allow output-energize instructions are eliminated. The two sequence step
contacts per motion (consistent with items 2.7.4 above) shall be programmed in each

appropriate solenoid control rung.

Revision 14JU25 Page 29 of 64
Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.7.15 The OutputMotions routine may include conventional motor-starter controlled motions,
or the motor-starter logic may be in another output-related or device related routine.

2.7.16 Motor starter logic format for conventional motors (run independent of machine
sequence) should be consistent with the format shown below (see Figure 16 below).

DB 10.DBXD.3 PumpMotor
StartPump StopPump MachineInCycle *D0O8_Fault”.No *D0%a_Msg". Starter
g bl 1 bl i bl "DO3_Cycle*MiC ImmediateStops MachineldlePulse e ool a3
| 1/ { | | A { }
PumpMotor PumpMotor
Starter Running
Q2 0t e age o

Figure 16: Example Motor Starter (Start/Stop) Logic

2.7.17 Motor starter logic format for sequence-controlled motors should be consistent with the
solenoid control format detailed in this Solenoid Control section, including rungs such as
the collision avoidance, auto allow, solenoid control, and motion timer rungs where
applicable (see Figure 17 below).

Allow Auto (from Conditions to
Sequence) Clear for Motion Enable Motion

"DO7_Out". "DO7_Out™. SpindleMotor "DO7_Out™.
MachineinCycle SpindleRotate. SpindleRotate *DO0_Main" HeE OverloadOk SpindleRotate.
"DO3_Cycle” MIC AutoAllow Clear Stops s e Enable
] |] |] |] |] |
11 1T 1T 1T 11 { —
. . . HMIPBl Conditions to
DO1_Mode®. . DO7_Out™. Enable Motion SpindleMotor
Manuallode SpindleRotate.PB "D07_Out" Stop Starter
|} | | Spindle.Enable o i i

s pindl indh
p P
Starter StarterOn
Qi npergenge
1L 1|
T L}

Figure 17: Example Sequence-Controlled Motor Starter Logic

2.7.18 Other general outputs may be programmed in the OutputMotions routine.

Note: Machine motions related to servos are typically programmed in a separate servo
routine. Indicator lights are typically programmed in the routines that relates to the
light’s purpose.

Revision 14JU25 Page 30 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.8 Machine Diagnostics — Display Control (multiple routines)

Nexteer’s machine diagnostics, display hierarchy, and diagnostic control philosophy are
described in Annex A, entitled “Machine Diagnostic Scheme and Hierarchy.” An understanding
of the Annex A’s terms will aid in an understanding the following machine diagnostics
requirements. The use of Nexteer fault and message routines plus Nexteer HMI screens support
compliance with the requirements of this clause.

Requirements:

2.8.1 The logic for fault display control shall be located in the Fault Control routine. The logic
for message display control shall be located in the Message routine.

2.8.2 All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault”
button/switch. The “Reset Fault” button/switch shall reset all fault conditions that no
longer exist. The “Reset Fault” button/switch shall only reset fault conditions when the
machine is not in cycle.

Reference: To view all faults when multiple faults exist, the HMI fault history screen must
be selected. Selection of the fault history screen is not controlled by the logic. Refer to
SD-2020.

2.8.3 When multiple machine messages exist, the logic shall automatically scroll through the
messages, displaying each for 3 seconds. After the last message has been displayed the
scrolling shall start again at the first message.

Guidance:

2.8.4 Fault display text requirements, naming and numbering, is described in SD-2020, Nexteer
Automotive Human Machine Interface Application Specification.

2.8.5 For equipment with a PLC that supports the character set in the language of the country
of destination, the fault and message HMI display text is allowed to be a text string stored
within the PLC. If these PLC text strings are used for display, an STOD instruction shall
be added to each fault and message rung.

Note: The dual language requirements from SD-2020 apply to use of these text string
displays.

Revision 14JU25 Page 31 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.9 Machine Diagnostics — Conditions and Detection logic

Requirements:

29.1
2.9.2

2.9.3

29.4

2.9.5

2.9.6

29.7

2.9.8

Any condition that stops a cycle shall create and display a machine fault.

Any condition that prevents the cycle from starting shall be displayed as a fault, message,
or status.

All faults shall seal-in until the fault is intentionally reset by actuating the “Reset Fault”
button/switch.

All faults shall be classified as either “Immediate Stop” faults or “Cycle Stop” faults. The
logic for Immediate Stop fault conditions and detection shall be located in the
Fault_ImmedStop routine. The logic for Cycle Stop fault conditions and detection shall
be located in the Fault_CycleStop routine.

Immediate Stop faults shall immediately remove power to MIC, stop commanding all
motions, and stop processing of the part.

Cycle Stop faults shall allow the machine to finish the current cycle, returning the
machine to its normal start position, and then drop MIC. Cycle Stop faults that are
detected prior to the start of a cycle shall prohibit the start of cycle.

Emergency Stop inputs, safety gate inputs, and indication of situations that could cause
harm to an operator or cause harm to the machine (such as a fault from a servo system)
shall be classified as Immediate Stop faults.

All machines, and every station on a multiple station system, shall include an immediate
stop cycle overtime fault.

1. The cycle overtime timer shall be active whenever the machine is in cycle.

2. Onsingle-cycle machines the timer for the cycle overtime fault is driven by MIC (only).
3. For continuous cycle machines, MIC also drives the fault timer, but the fault is inhibited
between cycles. The cycle overtime fault shall not be inhibited by a single condition

that can fail, such as a single limit switch input contact, because such a failure can lead
to inhibiting this safety-related cycle overtime fault.
Note: Resetting the cycle overtime timer with a pulse from a limit switch input is an
allowed method to implement a single condition into this cycle overtime fault.
4. Machines which have multiple cycles (such as MIC and Return All Cycle) shall include
a cycle overtime fault for each cycle.
Note: All cycles are allowed to enable one cycle overtime timer and fault.
Revision 14JU25 Page 32 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

2.9.9 All motion sensors shall be back checked and generate an Immediate Stop fault upon
failure detection.

1. For all motions that have more than one positional sensor, a Motion Sensor Error fault
shall be included. The fault shall be detected if the motion is both “advanced” and
“retracted”, or if the sensors indicate the motion to be at more than one position (such as
mid-position and advanced).

Note: Motion Sensor Error faults shall be provided for operator hand-powered
motions such as a hand-clamp.

2. For all motions that have only one positional sensor, back checking shall be
accomplished by two opposite-state uses of the sensor. A sensor contact shall be used in
the machine’s all returned logic, and an opposite-state contact shall be used in the
motion dwell timer. This motion dwell timer shall be included in the sequence logic to
indicate the completion of a sequence step. Thus, upon a sensor failure, two opposite-
state uses of the sensor will either generate a motion timer fault or a Not Returned
indication.

2.9.10 An Immediate Stop motion overtime fault shall be included for each logic-controlled
actuator. Exception: A motion overtime fault is not required for actuators that include
following-error faults, such as servo controlled actuators.

Note: The motion overtime timers may enable a single fault per actuator or two faults,
one for each direction of motion.

2.9.11 All non-motion sensors (such as part quality sensors, part present, and pick-bin sensors)
shall be back checked. Failures that are detected during a machine cycle shall cause an
Immediate Stop fault upon failure detection. Failures that are detected between machine
cycles shall cause either a Cycle Stop fault (preferred) or an Immediate Stop fault.

2.9.12 The logic for message conditions and detection shall be located in the Message routine.

2.9.13 The logic for machine status control shall be located in the MachStatus routine. The logic
for part status control shall be located in the PartStatus routine. The logic for operator
prompt control shall be located in the OperPrompt routine.

Guidance:

2.9.14 PLC Battery Low should be indicated as a machine message that does not prohibit
machine cycle. Also, when the PLC Battery Low condition is present, a resettable Cycle
Stop fault shall be triggered every 60 minutes until the battery is replaced.

2.9.15 The Nexteer_Library’s Fault_ImmedStop and Fault_CycleStop arrays (sized for 128
immediate stop faults and 64 cycle stop faults) may be increased in sized for applications
with numerous faults.

Revision 14JU25 Page 33 of 64

Proprietary

nexieer

APDL Programmable Logic Controller

Application Specification SD-2032

2.10 Routines Required On All Machines
Requirements:

2.10.1

2.10.2

2.10.3

2.10.4

The routines provided in the Main Program of the
Nexteer_Library file shall be used for all
applications (see Figure 18).

These required routines are to be programmed on
all equipment, even when the equipment does not
include any logic within the routine.

For single station equipment, the routines provided
in the Main Program of the Nexteer_L.ibrary file
shall be programmed in the MainProgram.

For multiple station equipment with multiple
programs, the routines provided in the Main
Program of the Nexteer_L.ibrary file shall all be
programmed, but are allowed to be distributed
between the MainProgram (sometimes called the
ConveyanceProgram) and the Station programs.

- Refer to Figure 19 on the following page for an
example of routine distribution within a multi-
station controller organizer.

- The routines provided in the Main Program of
the Nexteer_Library file are typically
duplicated within each station’s program.

Revision 14JU25

w LL| Nexteer_Library
4 D?TI Types
+ [Master copies
» [z DB

IEn :
™ |tz| Routines

2 ROO _Main

2 RO1_Mode

38 ROZ_Model

& RO3_Cycle

2 RO4_Analog

2 RO5_Sequence

& RO6_Quality

28 RO7_Cutputhotions
48 RO8a_Fault_Control
2 ROBb_Fault_ImmedStop
3 ROBc_Fault CycleStop
& RO9%a_Message

3 RO9b_MachineStatus
RO9c_PartStatus

¥ R0O9d_OperPrompt
38 R10_Counter

& R11_Login

4 R26a_NDT_OP1

& R35_HMI

3 R51a_LabelPrint
3 R51b_LabelPrint
3 R2001_Calibration

Figure 18: Nexteer_ Library
Controller Organizer

Page 34 of 64

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

~ [Program blocks
B Add new block
3 Master [OB123]
3 DataHandling [FC15]
48 DateTime [FC21]
48 NDT_Common [FC1]
@ DB_DateTime [DB21]
@ DB_Master [DB999]
@ DB_NDT_Common [DB1000]
@ Empty[DB22
@ ! [DB19]
@ Q[DB20]
~ [iz] OPDO1
3 ROO_Main [OB1]
&8 RO1_Mode [FC3]
48 RO2_Model [FC4]
3 RO3_Cycle [FC5]
4 RO4_Analog [FC6]
3 RO5_Sequence [FC7]
48 RO6_Quality [FC8]
4 RO7_OutputMotions [FC9]
48 RO8a_Fault_Control [FC10]
4 RO8b_Fault_ImmedStop [FC16]
3 RO8c_Fault_CycleStop [FC17]
3 RO9a_Message [FC11]
48 RO9b_MachineStatus [FC18]
48 RO9c_PartStatus [FC19]
38 RO9d_OperPrompt [FC20]
4 R10_Counter [FC12]
& R11_Login [FC13]
48 R26a_NDT_OP1 [FC2]
48 R35_HM [FC14]

Figure 19: Multiple Station Controller Organizer Views

Revision 14JU25 Page 35 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

3. Required Logic Design - Application Specific

Nexteer logic requirements that are associated with a routine are detailed in Section 2 above. The
following topics are additional application-specific requirements.

3.1 Light Curtain Interruption

Operator and machine safety is ensured by appropriately applied safety devices and
hardwired safety circuits. Therefore, the logic based on an interruption of the light
curtain does not relate to safety, but instead relates to part quality and properly
processing the part since the logic needs to consider that physical power has been
removed from hazardous actuators and devices.

3.1.1 Interruption of a light curtain during the machine cycle shall cause an Immediate Stop

fault. Typically the Light Curtain Blocked During Cycle fault is energized upon the first
scan that the light curtain is not clear.

Light Curtain Blocked During Cycle

PART QUALITY DESIGN ISSUE
- Interruption of a light curtain during part-quality-related machine cycle causes an immediate stop fault
- This is for process and part quality consideration, these are not safety concerns.

In this example the LC shall not be interrupted
- during the entire Machine in Cycle (MIC)
- however, the second branch has been include to show that IF the MIC branch was removed or AFI'd
-the second branch would then allow an LC interrupted delay up until the sequence step command to lower the front slide
- for the remainder of the cycle the LC cannot be momentarily interrupted

Sequence Steps Where
Interupting the

Machine In Light Curtain Meeds

Cycle (MIC) 311 1o Stop the Cycle

Cycle_MIC Fault_StopWhenLCBlocked
71 F
1 C
Step #50
Lower
Front Tooling Slide

Seq_Step050LowerSlide 3 1 2 1

Light Curtain Light Curtain
WMachine In Light Curtain Allowed Blocked Allowed Blocked
Cycle (MIC) Clear Debounce Timer Debounce Timer
Cycle_MIC 123 il TOM
JE 3/ E Move Timer On Delay HEM
Fault #6 Source 2000 Timer Fault_LightCurtainBlockedDelay
. . Preset 2000 € DN}—
Light Curtain ResetAll
Blocked During Cycle Faults Dest Fau\t_L\nguHamE\ockedDeIayEF'nl-_éE o Accum 0
Fault_ImmedStop[0].5 Fault_ResetAll
=l =l
Sequence Steps Where
Interupting the Fault #6
Light Curtain Needs Light Curtain
3. 122 to Stop the Cycle Blocked During Cycle
Fault_StopWhenLCBlocked Fault_ImmedStop[0].5
JE
Light Curtain
Allowed Blocked
Debounce Timer
Fault_LightCurtainBlockedDelay. DN
JE
Revision 14JU25 Page 36 of 64

Proprietary

nexieer

APDL Programmable Logic Controller

Application Specification SD-2032

3.1.2 A deviation that delays the fault, and allows the light curtain to be momentarily
interrupted during a cycle, shall meet all of the following requirements:

1. The logic design shall ensure part quality and proper machine sequence. Design
consideration needs to be given to ensure that the light curtain may be momentarily
interrupted only during those process steps where the part will still be properly
processed with hardware power momentarily removed.

To clarify: Most process steps that effect or work directly on the part will make a
reject part if hardware power is momentarily removed, and therefore light curtain
interruption during these steps shall be detected immediately and cause an immediate

stop fault.

To clarify: To avoid nuisance stops and loss of production, momentary interruption of
the light curtain during initial part-positioning machine motions (such as part clamps
and part shuttles) can be considered for inclusion in any logic that delays the Light

Curtain Blocked immediate stop fault.

The MIC contact and branch enabling the Fault_StopWhenLCBlocked output-energize
instruction may be removed or ignored with an AFI.

The Fault_LightCurtainBlockedDelay timer preset shall be set to 2000 or less (a
maximum of 2 seconds).

3.2 Motor Starter Control
3.2.1 Motor start control logic shall be designed such that resetting of an overload device does

not restart the motor (see Figure 21 below).

For applications where a normally open contact from the motor starter is wired to an
input, a normally-open (XIC) contact from this input shall be used in the seal-in branch
of the motor starter’s output-energize instruction.

For applications where the motor starter overload is wired to an input, a normally-open
(XIC) contact from this input shall be used as a condition to prohibit energizing the
motor starter’s output-energize instruction.

Conditions to
Enable Motion
*DO7_Out".

Allow Auto (from
Sequence) Clear for Motion
"DO7_Out” “DO7_Out”
SpindleRotate SpindleRotate "DO0_Main".NoE
AutcAllow Clear Stops
11 11 1|
1T 1T 11

SpindleMotor
OverloadOk SpindleRotate.
"3 3t Enable

| | { }—
32.1(2)

MachinelnCycle
*DO3_Cycle”.MIC

HMI PB
"DO1_Mode” "DO7_ourt".
ManualMode SpindleRotate PE
] L 1|
T L}

Conditions to
Enable Motion
"D07_Out".Stop Starter
Spindle Enable Q2T

—t—A

SpindleMotor

spindl s pindl
P p
Starter StarterOn
Qrr2rr Rp—r
11 11
11

3.2.1(1)
Figure 21: Example Motor Starter Logic

Revision 14JU25

Page 37 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

3.3 Shift Register / Indexing Logic

3.3.1 Data transfer in a shift register, whether stored in an array or a bit-register such as a
DINT, shall be initiated by a shift pulse conforming to the following requirements.

1. The shift pulse shall occur once per index cycle. Multiple shift pulses shall not occur
because of sensor contact bounce, programmable device power up/down, or any other
unintended cause. Refer to the IndexData routine within the Library_Routine program
of the Nexteer_Library file.

2. When index mechanisms are used, the shift pulse should occur when the indexing
mechanism begins to transfer parts from one station to another.

3.3.2 Logic shall be included to ensure the correctness of shift register part quality data; the
shift register logic shall prevent qualifying a Reject Part as a Good Part under the
following conditions.

1. Logic shall prevent against accepting Good Part status based on the reloading of PLC
memory (reloading of old or stale data).

2. Logic shall also prevent against accepting Good Part status based on memory which can
be invalid due to an unknown index (such as occurs when a dial table is indexed while
power is off).

Four approved methods of ensuring the correctness of shift register part quality
data include:

- resetting the shift register data (classifying all parts as rejects) on PLC power-
up (first scan logic), or

- use of a 10-turn encoder connected to a dial table indexer (to detect an index
without power), classifying all parts as rejects when powered-up out of the last
known position, or

- dial table fixture identification (such as RFID or barcode), read at a minimum
of one location, such that the shift register (or array pointer) can be reliably
established even under such conditions as clutch overload or manual-index with
power removed, or

- part identification (such as on-the-part RFID or barcode) read at load, tracked
with all other shift register part data, and read again at unload prior to unload.
The part shall be classified as a Reject Part if the part at unload is not the part
that had been loaded to that pallet or fixture.

Revision 14JU25 Page 38 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

3.4 Pallet Release / Pallet Memory

3.4.1 Logic for part-quality data storage, on asynchronous assembly lines with data tables (or
arrays) that use the pallet number as the table-pointer, shall prevent part-quality data from
being written to inaccurate locations in the data table.

1. The logic shall prevent storing (or memory of) a pallet number(s) which can become
inaccurate after the non-controlled transfer of pallets (such as the pushing the solenoid
override of a valve).

2. The logic shall reset the station’s part-quality memories (both within the station logic
and within conveyance pallet control logic) consistent with the Reset All Memories
requirements within the Cycle routine section of Section 2 above.

3.5 Indicator Lights

3.5.1 Luogic controlling indicator lights is typically programmed in routines associated with the
purpose of the light.

3.5.2 Test Lights logic shall be provided for all operator indicator lights. Note: Operator
indicator lights include lights on the operator control station and multi-colored pilot
lights provided at manual load / unload locations.

3.5.3 Logic for the manual load /unload station multi-colored LED pilot light (refer to SD-004)
shall be designed based on the following criteria at a minimum. Note: GREEN and
YELLOW may be used to indicate additional conditions; however RED shall only
indicate those conditions stated below.

1. “GREEN”: Solid Green shall indicate a Good Part. The light shall energize when the
machine cycle has completed, and stay energized until any of the following conditions
occur: either the part is unloaded, or the machine is put into Manual Mode, or the
machine is powered-down.

2. “RED”: Solid Red shall indicate a Reject Part; Flashing Red shall indicate the machine
has stopped because of a fault. When indicating a Reject Part the light shall remain
energized until the reject part has been handled appropriately. Note: Flashing Red
typically indicates an Immediate Stop fault. However, on continuous cycle machines
Flashing Red may indicate a Cycle Stop fault.

3. “YELLOW?”: Solid Yellow shall indicate Machine-In-Cycle (refer to the Machine-In-
Cycle section of this specification).

Revision 14JU25 Page 39 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

3.6 HMI Requirements for Synchronous Transfer Systems (Multiple HMIs)

This Multiple HMI section details the motion-control logic requirements for multi-station
synchronous-transfer systems with multiple HMIs, where machine motion can be initiated from
more than one HMI.

3.6.1 Manual/Off/Auto selection is required on each HMI station that can initiate machine
motion.

3.6.2 All station HMIs must have Auto selected to allow initiation of any automatic or manual
motion on the machine from the main control HMI. Manual and Off selections from
station HM s shall disable automatic and manual mode selection at the main control
HMI.

3.6.3 When Off is selected at a station, no motion for that station shall be permitted (whether
main or local initiated), and machine index or transfer shall not be permitted (whether
main or local initiated).

Note: This Multiple HMI section does not apply to asynchronous transfer systems such as pallet-
and-free conveyor lines. This section also does not apply to HMI stations that have been
included solely for remote display purposes.

Revision 14JU25 Page 40 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

This page intentionally blank.

Revision 14JU25 Page 41 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

A. Annex A - Machine Diagnostics Scheme and Hierarchy
A.1 General

Nexteer’s Production and Operations require machine diagnostics and display consistent between
all machines. Any condition that stops a cycle, or prohibits a cycle from starting, needs to be
detected and displayed for operations on the operator interface. Conditions which stop or prohibit a
cycle can be relative to the part, the machine, auxiliary devices, and the operator. Design
consideration needs be given to failures related to the part, failures related to the machine, failures
related to auxiliary devices, and incorrect operator action.

All machine diagnostics, from simple to complex, inherently use logical hierarchy for collecting
and displaying information. Nexteer specifications use the following terminology and hierarchy
within its specifications, guidelines and templates.

A.2 Terminology & Hierarchy:
Faults:

Faults are machine and device conditions. Faults require operator intervention; faults require
operator reset (via a Fault Reset button) — so therefore logic for faults seals-in and captures the fault
condition for machine diagnostics and potentially for part diagnostics. The fault display object is
programmed in a location on the global common screen, and placed in the same location on every
HMI screen. The display text is stored in the HMI, through an alarm list object, plus use of an alarm
history screen (refer to SD-2020). Nexteer’s specification require faults to be grouped into either an
Immediate Stop or a Cycle Stop

Immediate Stop Faults:

Immediate Stop Faults are those machine conditions that require the machine logic to instantly stop
part processing, immediately stop the machine cycle, and/or immediately stop all machine motion.

Immediate stop faults can include part conditions that prohibit the part from being processed
further. If the part condition indicates that there is no value in further processing the part, then the
part condition can be an immediate stop fault. A reject part can be either an immediate stop fault or,
more-typically, a cycle stop fault depending on the machine’s reject handling.

Example Immediate Stop Faults: Light Curtain Blocked During the Cycle, Machine Cycle
Overtime, sensor error faults, motion overtime faults, and certain part-quality faults.

Cycle Stop Faults:

Cycle Stop Faults are those machine conditions that do not require the machine to instantly stop,
therefore, the logic allows the machine to finish processing the part, or finish the current cycle,
and/or return the machine to its normal start position.

Cycle stop faults can include part conditions that allow a part to be completely processed and return
the machine to its home position. Cycle stop faults can also include part quality faults that allow the
machine to return to the home position without further processing of the part. A reject part is
typically a cycle stop fault, although it can be an immediate stop fault, depending on the machine’s
reject handling.

Example Cycle Stop Faults: Between-cycle back check faults, feed track low level, traceability PC
Heartbeat Timeout, and certain part-quality faults.

Revision 14JU25 Page 42 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Machine Messages:

Machine messages (typically referred to just as “messages”) are machine and device conditions.
Messages are general machine operating conditions with less significant impact concerning the
machine or the part and are not considered faults. A message indicates a condition that should be
corrected by operator intervention such that subsequent nuisance machine cycle stop faults can be
avoided. Messages are allowed to cycle stop the machine, but they typical do not. The message
display object is programmed in a location on the global common screen and placed in every
screen, typically separate from fault display such that messages are displayed on every HMI screen.
The display text is stored in the HMI through a multi-state indicator (refer to SD-2020).

Messages should be displayed as long as the associated machine condition exists. The fault reset
button or switch is not required to clear messages. Messages often require operator intervention
with the equipment such that the message is cleared after operator intervention. Without operator
intervention, the message condition may lead to an additional condition which can cause a cycle
stop fault.

Examples: Bowl Feeder Low Level - the message is associated with a need for the operator to add
parts to the bowl feeder. The Bowl Feeder Low Level message (and the logic displaying the
message) will no longer be displayed on the operator interface when the operator re-fills the bowl.
However, ignoring the message may lead to a Cycle Stop fault for No Parts in the feeder track,
which would require the operator to reset the fault display. Messages such as “PLC Battery Low”,
“Coolant Level Low”, ““Barrel Heat Zone Not at Temperature”, and “Bowl Feeder Low™ are
additional examples.

Machine Status and Part Status:

Machine Status and Part Status conditions have a lower hierarchy for display. There are several
fixed, standard, basic, and status conditions displayed in two dedicated multi-state indicators on
Nexteer’s Automatic HMI screen. The logic enabling these status displays is already programmed
in the logic and HMI templates consistent with the expectations for nearly all machines. The
machine status and part status logic typically do not need to be modified by the OEM.

Operator Prompts:

Operator Prompts (typically referred to as just “prompts”) are part and operator-related conditions
with less significant impact than faults or messages. Prompts are based on operator interaction with
the part being processed. Prompts indicate a condition for operator intervention such that
subsequent nuisance machine faults can be avoided. Prompt conditions are allowed to cycle stop
the machine, but typically do not, although the condition typically does prohibit a cycle from
initiating. Prompts are displayed in a dedicated multistate indicator on the Automatic screen(s).
Prompts should be displayed as long as the condition exists. A reset is not required to clear
prompts; they are cleared after operator intervention. Ignoring the prompt may lead to an additional
condition which can cause a cycle stop fault.

Prompts are application specific. Fully-automatic machines may require no prompts, while
operator-based hand-build assembly stations may require many prompts.

Example Prompt: Use Hand-Tool to Position Snap-Ring. The operator must use the hand-tool to
properly pre-position the snap-ring on the shaft prior to cycle. If the operator attempts to cycle
start the machine without correctly pre-assembling the snap-ring, a machine fault will occur.

Revision 14JU25 Page 43 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

B. Annex B - Controller: Organizer, Structure, Names, and Instructions
GENERAL

B.1 The TIA Portal PLC/HMI file name shall include the asset tag number (SD number) of the
machine(s).

B.2 The logic design shall be created using the FC with Ladder Diagram language type.
a. STL(Statement List) and Function Block Diagram(FBD) shall not be used.

b. The use of Structured Control Language(SCL) requires Nexteer Controls deviation approval
prior to the start of logic design. SCL shall not be used for basic machine control logic that is
used for machine support, such as cycle, sequence, motion and outputs, part quality, and
machine diagnostics. Note: A deviation can and may be granted for SCL that Nexteer Controls
has determined will not need to be altered by plant support personnel, nor used for machine
support. Two examples where Structured Text can be the appropriate language type include (1)
logic to accomplish sophisticated calculations, or (2) logic provided by the device manufacturer
that is not modified for the application).

B.3 The Master Control Reset (MCR) instruction shall not be used.
B.4 Output Latch instructions shall not be used in motion outputs.

B.5 FBs may be used when provided by the device manufacturer. FBs should be programmed in ladder
logic format.

B.6 Network comments shall be included to clarify the purpose or design intent of complex logic that is
not easily understood. Examples of complex logic can include math operations, data manipulation,
analog signal conversion, and communication to auxiliary devices.

B.7 The controller shall have at least 25% spare (unused) memory.

B.8 Forces or temporary logic used for bypassing logic shall be removed prior to MQ1 runoff of the
equipment. Proper logic operation shall be verified at MQL1.

B.9 Un-used logic, tag names, and descriptions shall be deleted prior to shipment of the machine.
Exception: Descriptions for un-used fault and message array bits should not be deleted.

Clarification: Un-used FBs and UDTs (PLC Data Types defined by OEM) are allowed to be
deleted from the delivered machine logic.

Clarification: The OEM is expected to remove unused Nexteer Library routines. However, when a
library routine (such as an RFID routine, or traceability routine) has been used within the main
program, the OEM is not required to remove un-used portions of logic from that routine.

CONTROLLER ORGANIZER: STRUCTURE AND NAMES

B.10 Nexteer logic files, showing the controller organizer structure and naming conventions as
described within the following sections, are located on www.nexteerdataexchange.com in the
Toolkits, Templates and Forms selection under Vendor Documents.

B.11 The PLC name (the Name field under Controller Properties) shall include the asset tag number
(SD number) of the machine(s) (see Figure 22 below).

B.12 Names shall be consistent between the routine names, 1/0 configuration devices names, and tag
names, as described within the following sections and as shown in the tables at the end of this annex.

Revision 14JU25 Page 44 of 64

Proprietary

APDL Programmable Logic Controller

nexieer

TASKS / PROGRAMS / ROUTINES

B.13 All programs and routines shall be organized under a program block Master. (Refer also to sub
routines deviations listed below).

Application Specification SD-2032

B.14 For a PLC controlling all routines shall be organized under a program block named
“Master[OBx]”. And each station shall be organized under a program R00_Main[OBXx] (see Figure 22
below).

B.15 For a PLC controlling multiple stations such as an assembly line, the program structure should
include a general-purpose Master Program and separate programs for each station under the Main
Program. The program for each station should be named as the station number. Each station program
should include routines consistent with the routines required from the Nexteer_Library MainProgram
(as noted elsewhere within this specification). And each program shall have its own DB. The
conveyance control logic should be included either as routines under the Main program (see Figure 22
below), or as routines under a program named Conveyor.

~ [5D123456 [CPU 1511-1 PN]

¥ r:i:; Program blocks
E* Add new block
48 Master [DB123]
28 DataHandling [FC15]
38 DateTime [FC21]
& NOT _Cormmman [FC1]
@ DE_DateTime [DB21] B.14
i@ DE_Master [DE299]
@ DB _NDT Cormmon [DE1000
@ Empty [DBE22]

3 ROO_Main [OB1]
3 RO1_Mode [FC3)
38 ROZ_Nodel [FC4]
48 RO3_Cycle [FC5]
28 RO4 Analog [FCS]

PLC Controlling a Master Program Block

~ [&] OPOO1

4 ROO_Main [OB1] -

4B RO1_Mode [FC3]

ET Device configuration B.11 4B RD2_Model [FC4]

% Online & diagnostics 4 R03_Cycle [FC5]

e i 48 RO4_sAnalog [FCE]
b mE Software units B.13

4 ROS_Sequence [FC7]

4 ROG_Quality [FCB]

48 RO7_OutputMotions [FC9]
4 RO8a_Fault_Control [FC10]
4 RO8Bb_Fault_ImmedStop [FC16]
48 RO8c_Fault_CycleStop [FC17]
4 RO9a_Message [FC11]

48 RO9b_MachineStatus [FC18]
3 ROS9c_PartStatus [FC19]

4 RO9d_OperPrompt [FC20]
48 R10_Counter [FC12]

48 R11_Login [FC13]

48 R26a_NDT_OP1 [FC2]

4 R35_HMI [FC14]

3 R51a_LabelPrint [FC24]

@ ! [DB19] & R51b_LabelPrint [FC25]
@ < [DB20] 48 R2001_Calibration [FC22]
= [iz] oPOD1 4 R9999_Test [FC23]

@ DO0_Main [DBS)

@ DO1_Mode [DBZ]

@ D02_Model [DB4]

@ Do3_Cycle [DB3]

@ D04_Analog [DB29]

@ D05_Seq [DB11]

@ Dos_Quality [DE9]

@ D07_Out [DB12]

@ DO3_Fault [DE10]

@ D0%_Msg [DB13]

@ DO0%b_MachineStatus [DB14]
@ DO9c_PartStatus [DB15]
@ D09d_OperPrompt [DE16]

B.15

@ D10_Count [DB17] -—

PLC Controlling Each Station

Figure 22: Program Blocks Organizer Routines

Revision 14JU25

Page 45 of 64

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

B.16 A deviation can and may be granted allowing program blocks per the following:
a. The Master OB shall be configured as a priority number 1.
b. The Main OB shall be configured as a priority number 2.
c. Enable minimum cycle time for the cyclic OBs.

B.17 For all projects, the name for each routine shall represent the functions or machine tasks that are
accomplished by the logic within the routine.

B.18 The Program blocks tree view shall represent the PLC logic solve-order. Therefore, the routine
names shall include the prefix Rxx. Note: xx represents the logic solving order. Duplicate numbers
are allowed such that related routines are grouped; however duplicate numbers should include an
alpha character suffix such that the controller organizer view represents the PLC logic solve-order.
The routines shall be called by logic within the routine Main in this numerical order.

B.19 Additional routines are available for use as determined by the machine application, such as
routines provided in the Library_Routines program of the Nexteer_Library. Logic from the library,
when used, shall be moved, copied, or imported into the MainProgram or station programs. Routines
shall be unconditionally called from the MainProgram or station programs. When the routine is
copied, it shall be renamed. Each program block shall have correspondent Data Block. The data block
shall include the prefix Dxx.

Note: Nexteer Library routines with a routine name appended with the text ““_TOOLS” contain
specific rungs of logic that are intended to be copied or rung-imported into existing MainProgram
or station program routines of the same name.

B.20 Additional routines are allowed for applications not illustrated in the logic templates. Additional
routines should follow the requirements and naming conventions of this specification.

Revision 14JU25 Page 46 of 64

Proprietary

nexieer

AUTOMOTIVE

APDL Programmable Logic Controller
Application Specification SD-2032

- [= Program blocks
E ~Add new block
;- Master [OB123]
48 DataHandling [FC15]
48 DateTime [FC21]
4 MDT _Common [FC1]

DB_DateTime [DB21]
@ DE_Master [DE999]
@ DE_NDT_Commen [DB1000]

B Empry [DE2Z]

@ ! [DB19]
@ o[os20]
« [iz] OPOOT

48 ROO_Main [OB1]
48 RO1_Mode [FC3]

48 R10_Coun =

2 R11_Login [FC13]

4 R26a_NDT OP1 [FC2]

48 R35_HMI[FC14]

4 R51a_LabelPrint [FC24]
48 R51b_LabelPrint [FC25]
4 R2001_Calibration [FC22]
& R9999 Test [FC23]

@ D00_Main [DBS]

@ DO1_Mode [DBZ]

@ D02 _Model [DB4]

@ D03_Cycle [DB3]

@ D04_sAnalog [DB29]

@ D05 Seq[DB11]

@ D06 _Quality [DBI]

@ D07_out [DB12]

@ D08_Fault [DB10]

@ D09a_Msq [DB13]

@ D0%b_MachineStatus [DE14]
@ DO%c_PartStatus [DB15]
@ D09d_OperPrompt [DB16]
@ D10_Count [DB17]

D11_Login [DE18]
@ D26_MDT OF1 [DE1001]
O35 M DET]

Figure 23:

Program block tree view

Revision 14JU25

BLOCK NUMBER AND OPTIMIZED BLOCK
ACCESS

B.21 Default program block number is set as
“automatic”.
[Texts |

General

General
General

Information

Time stamps.

Comphtian Name: [Dataanding

Protection Type: |FC

Language: | SCL

e —
() Manual

() Automatic

Attributes

B.22 DB_Master, DB_NDT_Common and

D26 _NDT_OPx shall be set as “manual”. And the
number shall be 999, 1000 and 1001. If the project has
multiple stations, D26_NDT_OPx shall be incremental
from 1001.

Note: The number of DB_NDT_Common shall be
matched with the setting NDT app. Default number is
1000.

|Genera| : Texts |
General I
General
information
Time stamps
Compilation Name: | DE_NDT_Commaon
Protection Type: o
Attributes
Download with Language: D.EI i
Mumber: (1000 [§]
@ Manus!
() Automatic

B.23 Optimized block access shall be unchecked for
DB_Master, DB_NDT_Common and D26_NDT_OPx.
Note: All other program blocks shall be checked.

J General

General

|| Texts |

Attributes

Information

Time stamps
Compilation [onlystore in load memory
Protection

Download with...

[Data block write-protected in the device
[] optimized block access
E Data block accessible frorm OPC UA

E Data block accessible via Web server

Page 47 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

DATA BLOCK TAGS
TAG NAMING

B.24 This section establishes a hierarchy for tag naming; the tables at the end of this annex show
examples with clarification notes.

B.25 1/O tag names shall start with the character | or Q for input or output respectively, then be built as
follows:

a. for distributed 1/0 only (such as remote I/O and distributed on-machine blocks) followed by
additional text.

i. D and a unique device number, or ST and a station number for the associated station, or B
and a unique block number, or BNI and a unique Balluff BNI module number.

ii. followed by an underscore character.
b. followed by the slot number (does not apply to distributed on-machine blocks).
c. foranalog I/0 only: followed by the text CH and the signal channel number.

Note: The additional text required on distributed 1/0 may be a combination of one or more device,
block, and station identification alpha-numeric characters. For the additional text required on
distributed 1/0, the number may be omitted on small systems which contain only one distributed 1/O
device, block, or module.

Note: Per SD-004, 1/O conductors shall have the same identification as the 1/0O, including cables
for analog signals.

B.26 Non I/O tags with contents modified (set or enabled) within a routine shall be named based on the
routine name, an underscore, and the tag function (purpose or use within the routine). Note: The
templates establish the required routine-name portion of the tag names that are associated with the
required routines. An abbreviation of the routine name may be used for tags associated with routines
and devices not specifically shown in the templates.

B.27 Non I/O tags with contents modified by a device shall be named based on the device name, an
underscore, and the tag function (purpose or use from the device).

B.28 Maximum overall tag name length should be 30 characters. It is recommended that upper case
characters be used to start each word in the name. The use of abbreviations should be minimized.

Revision 14JU25 Page 48 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

USER-DEFINED DATA TYPES (UDT / PLC data types)

B.29 This section describes both the application of Nexteer-provided UDTs, and establishes
requirements for OEM-created UDTSs.

B.30 Nexteer-provided UDTs have a property name prefixed with either a “u_" or an “x_" (see Figure
25).

a. UDTs that have a u_ prefix typically require modification to match the application.
b. UDTs that have an x_ prefix shall not be modified.

B.31 Tag names shall follow a similar convention to the non-1/O tag-naming section covered
previously in this specification. Note: Tags created by UDT usage will have a format:
Tag_Name.Device_Member.

a. The Tag_Name shall be a unique name for each use of the UDT, using the following naming
hierarchy:

b. Tags with contents modified (set or enabled) within a routine shall be named based on the
routine name. Example UDT usage tag name: Out_CloseClamp, with a complete tag and
member name Out_CloseClamp.Enable. Example UDT usage tag name: CodeReaderHsg, with
a complete tag and member name CodeReaderHsg.CommActive.

c. Tags with contents modified by a non-PLC device shall be named based on the device name.
Example UDT usage tag name: FANUC_Dataln, with a complete tag and member name
FANUC_Dataln. TPENBL. ~ [PLC data types

Note: Tag names are required to include a prefix based B’ Add new data type
on the routine in which the tag’s contents are modified. It “ i
therefore follows that, in order for an OEM-created UDT l—l H DateTime ST V2

to be acceptable, each use of the UDT shall have all [NX_DateTime_V2
member-modifying instructions, such as OTEs and timers, | u_Auds
set in one routine. B u b6
B.32 The Device_Member names shall be based on the H| u_b32
member’s control function (purpose or use). Bl CadeReader

B.33 All tags shall have detailed description consistent with | u_LotTracking
the Tag Descriptions section of this specification. 2] u_ModelSetup
| u_Motion

i lEeEsia o,

k L Systemn data types

Figure 24. PLC data types

Revision 14JU25 Page 49 of 64

Proprietary

"E}ﬂgg" APDL Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

B.34 The use of additional, OEM-created UDTSs, requires Nexteer Controls deviation approval prior to
the start of logic design.

a. OEM-created UDTs shall not be created for logic routines used for sequence, part quality, and
machine diagnostics (faults and messages).

b. OEM-created UDTs should not be created for logic routines used for mode and cycle.
c. OEM-created UDTs shall have a property name prefixed with the characters oem_name.

B.35 OEM-created UDTs, and OEM modification to Nexteer UDTs should keep UDT members
grouped by data type.

B.36 OEM-created UDTs, and OEM modification to Nexteer UDTs shall include detailed descriptions
for all UDT members consistent with the Tag Descriptions section of this specification.

Note: Tag member descriptions will be appended to the base tag description using the pass-through
display feature under the controller properties project tab. Refer to tag description examples shown
in the Tag Descriptions section at the end of this annex.

B.37 UDTs are also allowed when device-created by third-party device applications. The device-
created property name for these device-created UDTs should not be altered.

Revision 14JU25 Page 50 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

1/0 CONFIGURATION, ROUTINE, AND TAG NAMING TABLES

Naming — Consistency Between 1/0 Configuration Device Names and Tags
Namg - I/(.) Tag Name Examples Device Explanation and Clarification Notes
Configuration
11 11 Local Discrete Input Card I/0 configuration name is consistent with the I/0 device tag(s).
Slot 1
11 11.2 Local Discrete Input Card
Slot 1, Bit 2
Q4 Local Discrete Output Card I/0 configuration name is consistent with the I/0 device tag(s).
Slot4
Q4 Q4.7 Local Discrete Output Card Most outputs will be energized within the OutputMotions routine; however,
Slot 4, Bit 7 discrete outputs are NOT named by their associated routine. Naming by I/0 takes
priority.
13 13Ch1 Local Analog Input Card Although an analog input will be associated with the Analog routine, naming by I1/0
Slot 3, Channel 1 takes priority. This signal’s cable number should be I3CH1.
B2 IB2.8 Siemens Distributed Input Block I/0 configuration name is consistent with the 1/0 device tag(s).
Block 2, Bit 8
ST70_B1 IST70_B1.7 Siemens Distributed Input Block I/0 configuration name is consistent with the /0 device tag(s). This input device’s
Station 70, Block 1, Bit 7 wire number should be “ST70_IBKO01.7".

Table 1: 1/0 Tag Consistency — Local and Distributed 1/0

Revision Aug 27, 2021 Page 51 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

ARURTROR VS ORTRIRVAT] Application Specification SD-2032
Naming — Consistency Between 1/0 Configuration Device Names and Tags

Namg - I/O. Tag Name Examples Device Explanation and Clarification Notes

Configuration

D1 Distributed Point I/0 Point I/0 AENT Module number 1 either within a single station, or in the main
AENT Module 1 enclosure of a multi-station machine.

ID1_4 ID1 4.1 Point I/0 Input Card I/0 configuration name is consistent with the I/0 device tag(s).
Module 1, Slot 4, Bit 1

ST20 Distributed Point I/0 Point I/0 AENT Module associated with Station Number 20.
AENT Module ST20

IST20_1 IST20_1.5 Point I/0 Input Card Station 20 (only) inputs.
Module ST20, Slot 1, Bit 5

ST20_30 Distributed Point 1/0 Point I/0 AENT Module associated with Station Numbers 20 and 30, the I/0
AENT Module ST20 & ST30 Configuration name can include all Stations.

IST20_1 IST20_1.5 Point I/0 Input Card Station 20 (only) inputs. The I/0 Configuration name for the card is allowed to be
Module ST20, Slot 1, Bit 5 just the Station Number associated with the card when the Station Number is also

part of the AENT Module configuration name.

IST30_3 IST30_3.5 Point I/0 Input Card Station 30 (only) inputs. The I/0 Configuration name for the card is allowed to be

Module ST30, Slot 3, Bit 5 just the Station Number associated with the card when the Station Number is also
part of the AENT Module configuration name.

BNI2 IBNI2.4 Balluff BNl Module I/0 configuration name is consistent with the 1/0 device tag(s).

Module 2, Input 4

Table 2: 1/0O Tag Consistency — Distributed 1/0

Revision Aug 27, 2021 Page 52 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Naming — Consistency Between 1/0 Configuration Device Names and Tags

Namg - I/O. Tag Name Examples Device Explanation and Clarification Notes
Configuration
DM302 CodeReaderRack_DM302CommActive Cognex Dataman 300 Series Cognex Dataman Module 302, associated with reading the rack code,
Code Reader communication active OTE instruction programmed in the CodeReader_Rack
routine.
DM1155 CodeReaderRack_DM1155CommActive | Cognex Dataman 300 Series An example of a Cognex Dataman Model 302 that has a device number 1155
Code Reader (appears on Sheet 11, Line 55), tag names based on device number are
allowed when used consistently throughout the project.
DM302_Pinion | CodeReaderPinion_DM302Status Cognex Dataman 300 Series Cognex Dataman Model 302, associated with reading the pinion code,
Code Reader additional naming required if multiple code readers exist on the machine.
DM302_Sleeve | CodeReaderSleeve DM302Status Cognex Dataman 300 Series Cognex Dataman Model 302, associated with reading the sleeve code,
Code Reader additional naming required if multiple code readers exist on a machine.

Table 3: 1/O Tag Consistency — Code Reader

Revision Aug 27, 2021 Page 53 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Naming — Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

ROO_Main Main_NoEstops The OTE instruction programmed in the Main routine indicating that no
emergency stop conditions exist.

RO1_Mode Mode_AutoMode Automatic Mode Selected OTE instruction programmed in the Mode
routine.

R0O3_Cycle Cycle_MIC Machine In Cycle (MIC) OTE instruction programmed in the Cycle routine.

RO5_Sequence Seq_Step025PartQualityCheckl The OTE instruction programmed in the Sequence routine that initiates the
first quality check, at step number 25 of the sequence.

RO7_OutputMotions Out_ClearToRetractPress The OTE instruction programmed in the OutputMotions routine that
indicates the conditions are clear to retract the press.

RO7_OutputMotions HMI_CloseClamp HMI A tag used in the RO7_OtuputMotions routine, but set by the HMI,

indicating a command from the HMI to close the clamp.

RO8_Fault_Control Fault_NoCycleStops The OTE instruction programmed in the Fault_Control routine that
indicates there are no cycle stop conditions. Note that there are multiple
routines with tag names called “Fault_.”

RO8_Fault_CycleStop Fault_PartPresentBackcheck The OTE instruction programmed in the Fault_CycleStop routine that
maintains memory of the Part Present switch being OFF. Note that there
are multiple routines with tag names called “Fault_.”

RO8_Fault_ImmedStop | Fault_ImmedStop[0].1 Immediate Stop fault number 2; the OTE instruction programmed in the
Fault_ImmedStop routine. The tag’s description indicates the fault display
text. Note that there are multiple routines with ta names called “Faults_.”

Table 4: Routine and Tag Name Consistencies (Set 1)

Revision Aug 27, 2021 Page 54 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

Naming — Consistency Between Routine Names and Tags

Routine Name Tag Name Examples Device Explanation and Clarification Notes

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of
the UDT named UDT_BNI_Master_Faults_v2. In this example, the system
has only one master BNI and therefore the UDT predecessor name
(BNI_Faults) indicates no device number. The tag description for
Port2_Connection includes the text “I/O Link Port #2 (physically port #3)
Device Not Connected — Check Cable.”

R14_BNI_Master BNI_Faults.Port2_Connection Balluff BNI Module A tag set in the BNI_Master routine. The Port2_Connection member of
the UDT named UDT_BNI_Master_Faults_v2. In this example, the system
has only one master BNI and therefore the UDT predecessor name
(BNI_Faults) indicates no device number. The tag description for
Port2_Connection includes the text “I/O Link Port #2 (physically port #3)
Device Not Connected — Check Cable.”

R91_HyperCyl Out_HypercylPowerTimer.DN The done bit for the HyperCyl Power Stroke Raise / Lower Motion Fault
Timer. The done bit is used in the Fault routine, however, the ta name
includes the routine name “Out” since the timer is to be moved from the
R91 HyperCyl routine and programmed in the OutputMotions routine.

R91_HyperCyl Fault_ImmedStop[3].11 Immediate Stop fault number 108, HyperCyl Approach Motion Overtime,
included in the library routine R91_HyperCyl, however, the logic is to be
moved to the Fault_ImmedStop routine. The tag’s description is to be
consistent with the fault display text. Note that there are multiple
routines with the tag names called “Fault_".

Table 5: Routine and Tag Name Consistencies (Set 2)

Revision Aug 27, 2021 Page 55 of 64

Proprietary

"E}I([EE" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

TAG DESCRIPTIONS

B.38 All tags shall have detailed descriptions. The descriptions shall not be a copy of the tag name.
The descriptions should use full English words. To clarify: Descriptions should include more detail
than the tag name. The purpose of the description is to provide additional information to clarify tag
names that, due to length constraint, are not easily understood. Therefore abbreviations should also be
avoided.

B.39 The descriptions should be 5 lines or less with a maximum of 20 characters for each line.

B.40 The descriptions for all 1/0 tags shall be consistent with the wording on the hardware drawings.
Documentation for any unused 1/O tags shall be deleted or noted as spare prior to shipment of the
equipment.

B.41 Example descriptions that provide clarification detail are listed below.

Tag Name Description

Axis1_AutoAllowMoveRetPos Axis-1 Auto Allow Move to Return Position
Analog_ToolingPosition Tooling Position Scaled Value (inches)
Quality_RejectRemoved Reject Part Removed from Nest

Out_AdvancePunch

i Advance the Hydraulic Notch Punch
(u_Motion tag)

.Enable
(u_Motion member)

Conditions to Enable Motion

Out_AdvancePunch.Enable Advance the Hydraulic Notch Punch Conditions to Enable Motion

Table 6: Tag Description Examples

Revision Jan 01, 2025 Page 56 of 64

Proprietary

"E}I([EE" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

C. Annex C —Complex or Special Sequence Considerations
C.1 General

Nexteer’s logic philosophies and requirements for basic machine sequence are detailed above
within the Sequence routine section of this specification.

The purpose of this annex is to explain how to incorporate several complex, special, or customized
sequences into the Nexteer format and philosophy. For all applications, the design of the sequence
logic needs to provide the Nexteer plant personnel with a quick understanding of how the machine
processes the part.

Four variants of sequences are detailed in this annex:

e Variance in step-order, such as different sequences based on model selection

e Multiple simultaneous sequences, such as processes occurring at the same time within
an over-all machine sequence

e Machine that repeats processes

e Use of the Sequence routine for machines specifically designed for hand-assembly of
parts

The routines related to special sequence applications typically include the Main and Sequence
routines.

Requirements:

Simple variance in machine sequence can be accomplished within one sequence routine. However,
for more complex sequences as described within this annex, multiple sequence routines may be
programmed.

Simple machine example: When running Model L and W it is required that two screws be tightened
in the order of screw 1 then 2, but for Model R these two screws are to be tightened in the order of
screw 2 then 1. This simple sequence variance may be accomplished with just a few logic contacts

within the one sequence routine.

The Main routine requirements section of this specification states that the Main routine shall
include logic that unconditionally calls (jumps to) all other routines. The routines shall be called in
the same rung-order as is visible in the controller organizer.

Revision Jan 01, 2025 Page 57 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

C3 Variance in step-order:

For more complicated sequences, multiple sequence
routines may be programmed.

) Machine example, the Cover Screw station on a Solder

38 RD5a_Sequence Main [FC26] Line: The station requires a differing number of screws for
48 RO5b_Seguence_Model L [FC26] each model cover, as well as a differing screw order. In this
example the station steps through its main sequence, and
then proceeds to the correct Model L, W, or R screw

4 RO5b_Sequence_Model W[FC26] sequence before returning to the main sequence routine to
B S complete the cycle.

& rosb Sequence Model B [FC26]

When multiple sequence routines are programmed for a
single station, each sequence routine may include a
Reset_Sequence output-energize instruction.

Figure C.3: Multiple Model- Note: In this example Reset_Sequence output-energize
Dependent Sequence Routines instruction from the Sequence_Main routine resets the steps
from all routines.

C4 Multiple simultaneous sequences:

48 ROSa_Sequence_TurnTable [FC26] Use of multiple sequences is a convenient programming
method when multiple processes need to occur at the same
time, such as when multiple stations on a dial table all

4 RO5c_Sequence_Test [FC26] process their respective part at the same time.

28 RO5b_Sequence_LoadUnload [FC26]

In the controller organizer shown in Figure C.4 to the left,
the dial table index sequence is controlled by the TurnTable
sequence. After index, the load and unload station sequence
Figure C.4: Multiple Simultaneous is controlled by the Load_Unload routine, while

Sequence Routines simultaneously the test station sequence is controlled by the
combined Test routine.

Multiple sequences may be programmed on an individual station when multiple processes need to
occur at the same time.

When multiple sequence routines are programmed for a single station, each sequence routine may
include a Reset_Sequence output-energize instruction.

Note: In this example a separate Reset_Sequence output-energize instruction for each
routine should be programmed to reset just that routine’s steps from all routines.

Revision Jan 01, 2025 Page 58 of 64

Proprietary

nexieer

Programmable Logic Controller

Application Specification SD-2032

38 ROSa_Seqguence_TurnTable [FC26]
38 ROSb_Sequence_LoadUnload [FC26]
3 RO5c_Sequence_Test [FC26]

3 RO5d_Sequence_ReTest [FC26]

Figure C.5: Multiple Sequence
Routines — Repeat Sequence

C.5 Repeat process steps:

Use of multiple sequence routines is also a convenient
programming method when a part process needs to repeat a
major portion of the machine sequence.

Typically, a station will step through the normal sequence
of advancing motions, but when a process needs to be
repeated, the logic should proceed to a separate sequence
routine that includes both steps to retract motions and steps
that then re-advance motions until reaching the position to
repeat a process (reaching the steps to be repeated in the
normal sequence routine).

Example: In the program blocks tree shown in Figure C.5
to the left, the test station’s typical sequence (Test) engages
the part and steps through the test process. After the test, if
the part is allowed to be re-tested, the logic proceeds to the
ReTest sequence which retracts the engage motion and
resets the Test sequence such that the normal Test sequence

is re-run. The Test sequence would again engage and test.

Note: In this example Reset_TestSequence output-energize instruction has been programmed in the
SequenceC_Test routine to reset all steps in both the SequenceC_Test and SequenceD_ReTest
routines, which includes resetting the sequence when the ReTest sequence has retracted the engage

motion.

Revision Jan 01, 2025

Page 59 of 64

Proprietary

"E}ﬂgg" Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

D. Annex D - Cycle Pause - Pausing a Cycle

D.1

D.2

D.3

General

Pausing a cycle is not typical for Nexteer’s production processes. Typically it is not appropriate to
pause a cycle (and then restart the cycle). Therefore most machines should not include a Cycle
Pause feature because of the complex logic that would be needed to ensure part quality and proper
machine sequence. The logic would be complex when taking into account every possible incorrect
or inadvertent machine or operator action that could occur while the machine is paused.

Logic that includes the ability to pause and then restart a cycle adds a level of complication to the
Nexteer logic philosophies and formats established within this specification. Even so, the purpose
of this Cycle Pause annex is to explain how to incorporate an operator initiated Cycle Pause
(through an HMI pushbutton Cycle Pause) feature into the Nexteer format and philosophy, since
the ability to pause a cycle is occasionally allowed for specific applications.

Requirements
A Pause Cycle momentary push button shall be included on the HMI Automatic screen.

Example logic for a Cycle Pause feature is available within the template routines. The Cycle routine
will require additional rungs to break the Machine In Cycle, provide a pause request pulse, specify
conditions that will allow a cycle to remain paused, and seal-in the paused state. The Immediate
Stop fault routine will include a Maximum Paused Time fault if the cycle has been paused for more
than two minutes.

Application Specific

Logic shall be included in the OutputMotions routine as revisions to the Auto Allow rung for each
motion. Typically a contact from the motion’s collision avoidance output-energize instruction (a),
and a contact indicating that the previous machine sequence motion has been completed (b), are
required. The first motion of the sequence does not require these contacts.

I Figure 25: Auto Allow Collision
otion Has
Completed Clear fi i i
o o e Avoidance for Cycle Pause
Probe.Comnpleted slide Clear
| | { F—
Allow Auto (from
"D05_Seq” Clear for Motion Sequence)
Step190_Rais - Seq”.Cycle " ut” Raise - ut".Raise
teps\id_s o DDCSU_mpcI‘EtCe) I SD\EIE_.»?uttoFilw.'
i | i { | { —
Revision Jan 01, 2025 Page 60 of 64

Proprietary

"E}ﬂegp Programmable Logic Controller

AUTOMOTIVE Application Specification SD-2032

The application specific detail that cannot be shown in an example includes the complex logic
required to ensure part quality and proper machine sequence. The most complex logic that shall be
considered addresses these two questions for each and every motion and process:

o Will the part process occur correctly if any motion that has already fully advanced be hand-
forced out of position while paused, and then be re-advanced by restarting a paused cycle?

o Will the part process occur correctly if any motion that has already fully advanced simply be de-
pressurized (such as via interruption of a light curtain) while paused, and then be re-pressurized
by restarting a paused cycle?

Revision Jan 01, 2025 Page 61 of 64

Proprietary

nexieer

Programmable Logic Controller

Application Specification SD-2032

E. Annex E - Glossary

E.l

E.2

E.3

E.4

E.5

E.6

Abort Cycle: An operator-initiated
command to immediately stop the current
machine cycle.

Auto allow: A Nexteer phrase referring to
the one output-energize instruction that
provides a common method of interfacing
the auto mode sequence logic into the
standard solenoid output control rung of
logic. One Auto Allow output-energize
instruction is provided per direction of
motion; and one contact is used from this
output-energize instruction. Auto Allow is
enabled by commands from the sequence
logic.

Back Check: Back check, back checked,
or back checking, are terms or phrases that
originated from logic that “checked” that
an input was OFF (or went “back” to OFF
after a cycle) such that the input would
then be ensured to transition to ON during
the cycle in order classify a part as a Good
Part. Nexteer’s use of the term has
evolved to be associated with any and all
logic that ensures the function of inputs
and input devices (including discrete,
analog, and communication-based).

Collision avoidance: A Nexteer phrase
related to logic included to prevent
damage to the tooling or part; logic that
“avoids” a damaging “collision.” Similar
terms include clear to move, motion
interlocks, and motion constraints.

Control Function in the Event of Failure:
A term referenced from international
machine standards such as IEC 60204-1.
The term refers to how the machine
control system is designed to detect, react,
and function when a failure occurs.

Debounce (sensor debounce): Bounce is a
common industry term for the tendency of
a contact in devices to generate multiple
signals as the contact closes or opens,
including potential multiple signals from
the bounce of machine mechanics;
“debounce” is any logic that ensures that

Revision Jan 01, 2025

E.7

E.8

E.9

E.10

E.11

E.12

E.13

E.14

only a single signal will be acted upon for
a single opening or closing of a contact.

Error proofing: An automatic device or
method that either makes it impossible for
an error to occur or makes the error
immediately obvious once it has occurred.

MIC: A Nexteer acronym used for the
term Machine In Cycle.

OEM: An acronym used for the Original
Equipment Manufacturer; another term
used for the machine builder.

PSDI: An acronym for Presence Sensing
Device Initiation, referenced from
international machine standards such as
ANSI. PSDI is the machine control
function for starting a machine cycle
based upon the loss of a signal from a
presence-sensing safety device (or the
absence of an operator within the safety
device presence-sensing envelope, safely
clear of the hazardous area).

Reset All Memories: The control function
and output-energize instruction that resets
memories affecting, storing, or otherwise
relating to part status and part quality.

Seal-in logic: A common phrase in ladder
logic referring to parallel contacts that
keep an output-energize instruction in the
ON state (“seal-in” the output). Although
similar to the function of an output-latch
instruction, Nexteer typical requires an
output-energize instruction with parallel
contacts seal-in such that all of the logic
controlling the state of the output can be
viewed within one rung of logic.

Template: The Nexteer HMI and PLC
logic files provided as examples of both
(1) basic format, and (2) methods of
compliance to Nexteer specifications.

Unconditionally called: Logic that powers
the output command directly from the left-
hand power rail such that the command is

executed each logic scan.

Page 62 of 64

Proprietary

nexieer

Programmable Logic Controller

Application Specification SD-2032

F. Annex F - References

F.1

F.2

F.3

F.4

F.5

F.6

IEC 60204-1: Electrical Equipment of
Machinery — Part 1: General
Requirements

SD-000: Nexteer Automotive Machinery
and Equipment Specification

SD-004: Nexteer Automotive Electrical
Specification for Industrial Machinery
Addendum to IEC 60204-1

SD-2007: Nexteer Automotive Approved
Components List

SD-010: Nexteer Automotive Standard
Equipment Specification

SD-011: Nexteer Automotive
Specification for Safety Circuits

Revision Jan 01, 2025

F.7

F.8

F.9
F.10

SD-2020: Nexteer Automotive Human
Machine Interface Application
Specification

SD-1033: Nexteer Automotive RFID
Application Specification

SD-2034: Machine Controls Traceability

TIA v17 PLC HMI_Template_Files_rev
_date.zip: Nexteer Automotive Siemens
TIA Portal files

NOTE: To obtain a copy of Nexteer
Automotive specifications and templates
visit our vendor document web-site
currently at
www.nexteerdataexchange.com . Copies
of any other referenced specification can
be purchased, typically from the
originating organization or at various
industry specification web-sites.

Page 63 of 64

Proprietary

nexieer

AUTOMOTIVE

Programmable Logic Controller

Application Specification SD-2032

RECORD OF REVISIONS

Revision #

Date

Section

Description

001

14JU25

All

Original Approval & Issue Date.

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

Revision Jan 01, 2025

Page 64 of 64

Proprietary

